• Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. L. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127 , 14331457.

    • Search Google Scholar
    • Export Citation
  • Anthes, R., Y-H. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111 , 11741188.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13 , 870877.

  • Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39 , 22312248.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129 , 108122.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19 , 13181332.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., and G. M. Lackmann, 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone. Mon. Wea. Rev., 133 , 19131937.

    • Search Google Scholar
    • Export Citation
  • Bullrich, K., R. Eiden, R. Jaenicke, and W. Nowak, 1966: Optical transmission of the atmosphere in Hawaii, II. Johannes Gutenberg University Final Tech. Rep., Contract DA-91-591-EUC-3458, 79 pp.

    • Search Google Scholar
    • Export Citation
  • Businger, S., T. Birchard Jr., K. R. Kodama, P. A. Jendrowski, and J-J. Wang, 1998: A bow echo and severe weather associated with a Kona low in Hawaii. Wea. Forecasting, 13 , 576591.

    • Search Google Scholar
    • Export Citation
  • Caruso, S. J., and S. Businger, 2006: Subtropical cyclogenesis over the central North Pacific. Wea. Forecasting, 21 , 193205.

  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Chang, D-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129 , 18091833.

    • Search Google Scholar
    • Export Citation
  • Chèze, J-L., and H. Sauvageot, 1997: Area-average rainfall and lightning activity. J. Geophys. Res., 102 , 17071715.

  • Christian Jr., H. J., 2006: Geostationary Lightning Mapper (GLM). Preprints, 12th Conf. on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., J2.3.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1992: Lightning Imaging Sensor (LIS) for the Earth Observing System. NASA Tech. Memo. 4350, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108 , 4005. doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cram, R. S., and H. R. Tatum, 1979: Record torrential rains on the island of Hawaii, January–February 1979. Mon. Wea. Rev., 107 , 16531662.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of precipitating convection under varying environmental conditions. J. Climate, 15 , 25972615.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and D. C. Rogers, 1990: Freezing nucleation rates of dilute solution droplets measured between −30° and −40°C in laboratory simulations of natural clouds. J. Atmos. Sci., 47 , 10561064.

    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., 1961: Radar reflectivity profiles in thunderstorms. J. Atmos. Sci., 18 , 292305.

  • Ebert, E. E., and G. J. Holland, 1992: Observations of record cold cloud-top temperatures in Tropical Cyclone Hilda (1990). Mon. Wea. Rev., 120 , 22402251.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • Foster, J., M. Bevis, Y-L. Chen, S. Businger, and Y. Zhang, 2003: The Ka‘ū storm (November 2000): Imaging precipitable water using GPS. J. Geophys. Res., 108 , 4585. doi:10.1029/2003JD003413.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007a: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20 , 50415060.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007b: Relationships between lightning and properties of convective cloud clusters. Geophys. Res. Lett., 34 , L15705. doi:10.1029/2007GL030227.

    • Search Google Scholar
    • Export Citation
  • Göke, S., H. T. Ochs III, and R. M. Rauber, 2007: Radar analysis of precipitation initiation in maritime versus continental clouds near the Florida coast: Inferences concerning the role of CCN and giant nuclei. J. Atmos. Sci., 64 , 36953707.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2006: Bayesian estimation of precipitation from satellite passive microwave observations using combined radar–radiometer retrievals. J. Appl. Meteor. Climatol., 45 , 416433.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertically velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Junge, C. E., E. Robinson, and F. L. Ludwig, 1969: A study of aerosols in Pacific air masses. J. Appl. Meteor., 8 , 340347.

  • Kelley, W. E., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110 , 471480.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37 , 24442457.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Mackerras, D., M. Darveniza, R. E. Orville, E. R. Williams, and S. J. Goodman, 1998: Global lightning: Total, cloud and ground flash estimates. J. Geophys. Res., 103 , 1979119809.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • McCaul Jr., E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McMurdie, L., and C. Mass, 2004: Major numerical forecast failures over the Northeast Pacific. Wea. Forecasting, 19 , 338356.

  • Morrison, I., and S. Businger, 2001: Synoptic structure and evolution of a kona low. Wea. Forecasting, 16 , 8198.

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainties. J. Appl. Meteor. Climatol., 45 , 702720.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and J. E. Martin, 2004: A synoptic climatology of the subtropical kona storm. Mon. Wea. Rev., 132 , 15021517.

  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133 , 19611977.

    • Search Google Scholar
    • Export Citation
  • Pessi, A., S. Businger, and T. Cherubini, 2006: Comparison of two methods for assimilation of lightning data into NWP models. Preprints, First Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, CD-ROM.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., S. Businger, K. L. Cummins, N. W. S. Demetriades, M. Murphy, and B. Pifer, 2009: Development of a long-range lightning detection network for the Pacific: Construction, calibration, and performance. J. Atmos. Oceanic Technol., 26 , 145166.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103 , 1402514040.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124 , 602620.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, R. C. Cifelli, B. S. Ferrier, and B. F. Smull, 1999: Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80 , 8197.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32 , L14819. doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64 , 738761.

    • Search Google Scholar
    • Export Citation
  • Pierce, E., 1970: Latitudinal variation of lightning parameters. J. Appl. Meteor., 9 , 194195.

  • Plank, V. G., 1969: The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8 , 4667.

  • Prentice, S. A., and D. Mackerras, 1977: The ratio of cloud to cloud-ground lightning flashes in thunderstorms. J. Appl. Meteor., 16 , 545549.

    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1993: What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20 , 463466.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73 , 316.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., and Coauthors, 1975: The upper tropospheric circulation over the global tropics. Department of Meteorology, University of Hawaii Tech. Rep. UHMET-75-05. [Available online at http://www.soest.hawaii.edu/Library/Sadler.html.].

    • Search Google Scholar
    • Export Citation
  • Saunders, C., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32 , 642655.

  • Sherwood, S. C., V. T. J. Phillips, and J. S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33 , L05804. doi:10.1029/2005GL025242.

    • Search Google Scholar
    • Export Citation
  • Soriano, L. R., F. de Pablo, and E. G. Díez, 2001: Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula. Mon. Wea. Rev., 129 , 29983003.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43 , 182198.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1976: Warm rain, giant nuclei and chemical balance—A numerical model. J. Atmos. Sci., 33 , 269286.

  • Takahashi, T., 1978: Electrical properties of oceanic tropical clouds at Ponape, Micronesia. Mon. Wea. Rev., 106 , 15981612.

  • Takahashi, T., 1984: Thunderstorm electrification—A numerical study. J. Atmos. Sci., 41 , 25412558.

  • Takahashi, T., 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17 , 23812384.

    • Search Google Scholar
    • Export Citation
  • Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37 , 14971509.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., K. I. Mohr, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part I: Radar reflectivity and lightning. J. Appl. Meteor., 35 , 902918.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Wang, C. P., 1963: Lightning discharges in the tropics, 1. Whole discharges. J. Geophys. Res., 68 , 19431949.

  • Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90 , (D4). 60136025.

  • Williams, E. R., K. Rothkin, D. Stevenson, and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Meteor., 39 , 22232230.

    • Search Google Scholar
    • Export Citation
  • Yang, S., W. S. Olson, J. J. Wang, T. L. Bell, E. A. Smith, and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45 , 721739.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1970: The Line Island Experiment: Its place in tropical meteorology and the rise of the fourth school of thought. Bull. Amer. Meteor. Soc., 51 , 11361146.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122 , 18371851.

  • Zipser, E. J., and M. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37 , 24582469.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122 , 17511759.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 121 0
PDF Downloads 186 96 0

Relationships among Lightning, Precipitation, and Hydrometeor Characteristics over the North Pacific Ocean

View More View Less
  • 1 School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

Lightning data from the Pacific Lightning Detection Network (PacNet) and Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite were compared with TRMM precipitation radar products and latent heating and hydrometeor data. Three years of data over the central North Pacific Ocean were analyzed. The data were divided into winter (October–April) and summer (June–September) seasons. During the winter, the thunderstorms were typically embedded in cold fronts associated with eastward-propagating extratropical cyclones. Summer thunderstorms were triggered by cold upper-level lows associated with the tropical upper-tropospheric trough (TUTT). Concurrent lightning and satellite data associated with the storms were averaged over 0.5° × 0.5° grid cells and a detection efficiency correction model was applied to quantify the lightning rates. The results of the data analysis show a consistent logarithmic increase in convective rainfall rate with increasing lightning rates. Moreover, other storm characteristics such as radar reflectivity, storm height, ice water path, and latent heat show a similar logarithmic increase. Specifically, the reflectivity in the mixed-phase region increased significantly with lightning rate and the lapse rate of Z decreased; both of these features are well-known indicators of the robustness of the cloud electrification process. In addition, the height of the echo tops showed a strong logarithmic correlation with lightning rate. These results have application over data-sparse ocean regions by allowing lightning-rate data to be used as a proxy for related storm properties, which can be assimilated into NWP models.

Corresponding author address: Steven Businger, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Abstract

Lightning data from the Pacific Lightning Detection Network (PacNet) and Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite were compared with TRMM precipitation radar products and latent heating and hydrometeor data. Three years of data over the central North Pacific Ocean were analyzed. The data were divided into winter (October–April) and summer (June–September) seasons. During the winter, the thunderstorms were typically embedded in cold fronts associated with eastward-propagating extratropical cyclones. Summer thunderstorms were triggered by cold upper-level lows associated with the tropical upper-tropospheric trough (TUTT). Concurrent lightning and satellite data associated with the storms were averaged over 0.5° × 0.5° grid cells and a detection efficiency correction model was applied to quantify the lightning rates. The results of the data analysis show a consistent logarithmic increase in convective rainfall rate with increasing lightning rates. Moreover, other storm characteristics such as radar reflectivity, storm height, ice water path, and latent heat show a similar logarithmic increase. Specifically, the reflectivity in the mixed-phase region increased significantly with lightning rate and the lapse rate of Z decreased; both of these features are well-known indicators of the robustness of the cloud electrification process. In addition, the height of the echo tops showed a strong logarithmic correlation with lightning rate. These results have application over data-sparse ocean regions by allowing lightning-rate data to be used as a proxy for related storm properties, which can be assimilated into NWP models.

Corresponding author address: Steven Businger, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Save