• Bantages, R. J., J. E. Russel, and J. D. Haigh, 1999: Cirrus cloud top-of-atmosphere radiance spectra in the thermal infrared. J. Quant. Spectrosc. Radiat. Transfer, 63 , 487498.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., D. P. Kratz, P. Yang, S. C. Ou, Y-X. Hu, P. F. Soulen, and S-C. Tsay, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models. J. Geophys. Res., 105 , 1176711780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44 , 18961911.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1974: Remote sounding of cloud atmospheres. I. The single cloud layer. J. Atmos. Sci., 31 , 233243.

  • Chahine, M. T., and Coauthors, 2002: AIRS-Team retrieval for core products and geophysical parameters. AIRS Algorithm Theoretical Basis Doc. JPL D-17006. [Available online at http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/AIRS/atbd-airs-L2.pdf.].

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132 , 16841700.

    • Search Google Scholar
    • Export Citation
  • Chung, S., S. Ackerman, P. F. van Delst, and W. P. Menzel, 2000: Model calculations and interferometer measurements of ice-cloud characteristics. J. Appl. Meteor., 39 , 634644.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16 , 12411248.

    • Search Google Scholar
    • Export Citation
  • Gao, B-C., K. Meyer, and P. Yang, 2004: A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 μm. IEEE Trans. Geosci. Remote Sens., 42 , 18911899.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, H-L. Huang, B. A. Baum, Y-X. Hu, and S. Platnick, 2007: The sensitivity of ice optical and microphysical passive satellite retrievals to cloud geometric thickness. IEEE Trans. Geosci. Remote Sens., 45 , 13151323.

    • Search Google Scholar
    • Export Citation
  • Hu, Y-X., B. Wielicki, B. Lin, G. Gibson, S-C. Tsay, K. Stamnes, and T. Wong, 2000: Delta-fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-square fitting. J. Quant. Spectrosc. Radiat. Transfer, 65 , 681690.

    • Search Google Scholar
    • Export Citation
  • Huang, H-L., P. Yang, H. Wei, B. A. Baum, Y-X. Hu, P. Antonelli, and S. E. Ackerman, 2004: Inference of ice cloud properties from high spectral resolution infrared observations. IEEE Trans. Geosci. Remote Sens., 42 , 842853.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, 2006: Collection 005 change summary for the MODIS cloud optical property (06_OD) algorithm. [Available online at http://modis-atmos.gsfc.nasa.gov/C005_Changes/C005_CloudOpticalProperties_ver311.pdf.].

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53 , 501517.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Coauthors, 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor., 44 , 15261543.

  • McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972: Optical properties of the atmosphere. Air Force Cambridge Research Laboratory Research Paper 411, AFCRL-72-0497, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., P. Yang, and B-C. Gao, 2004: Optical thickness of tropical cirrus clouds derived from MODIS 0.66- and 1.375-μm channels. IEEE Trans. Geosci. Remote Sens., 42 , 833841.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Potter, G. L., and R. D. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109 , D02106. doi:10.1029/2003JD004018.

    • Search Google Scholar
    • Export Citation
  • Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell, 2003: Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder. J. Geophys. Res., 108 , 4281. doi:10.1029/2002JD002801.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard, 1998: Infrared spectral absorption of nearly invisible cirrus clouds. Geophys. Res. Lett., 25 , 11371140.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., R. Holz, A. Chedin, D. L. Mitchell, and A. J. Baran, 1999: Retrieval of cirrus ice crystal sizes from 8.3 and 11.1 μm emissivities determined by the improved initialization inversion of TIROS-N operational vertical sounder observations. J. Geophys. Res., 104 , 793808.

    • Search Google Scholar
    • Export Citation
  • Webb, M. C., C. Senior, S. Bony, and J-J. Morctrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17 , 905922.

    • Search Google Scholar
    • Export Citation
  • Wei, H., P. Yang, J. Li, B. A. Baum, H-L. Huang, S. Platnick, Y-X. Hu, and L. Strow, 2004: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42 , 22542267.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., E. F. Harrison, R. D. Cess, M. D. King, and D. A. Randall, 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76 , 21252153.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W., 1977: The Delta–M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34 , 14081422.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H. L. Huang, B. A. Baum, Y-X. Hu, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database of various nonspherical ice particles in the infrared and far-infrared spectral region. Appl. Opt., 44 , 55125523.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 32
PDF Downloads 3 3 3

Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

View More View Less
  • 1 Texas A&M University, College Station, Texas
  • | 2 Science Systems and Applications, Inc., Hampton, Virginia
  • | 3 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

The retrieval of ice cloud microphysical and optical properties from satellite-based infrared observation remains a challenging research topic, partly because of the sensitivity of observed infrared radiances to many surface and atmospheric parameters that vary on fine spatial and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness. To illustrate the sensitivity, the authors first simulate brightness temperatures at 8.5 and 11.0 μm using the discrete ordinates radiative transfer (DISORT) model for five cloud-top heights ranging from 8 to 16 km and for varying cloud geometric thicknesses of 1, 2, 3, and 5 km. The simulations are performed across a range of visible optical thicknesses from 0.1 to 10 and ice cloud effective diameters from 30 to 100 μm. Furthermore, the effective particle size and optical thickness of ice clouds are retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements on the basis of a lookup-table approach. Specifically, the infrared brightness temperatures are simulated from the collocated Atmospheric Infrared Sounder (AIRS) level-2 product at 28 atmospheric levels and prescribed ice cloud parameters. Variations of the retrieved effective particle size and optical thickness versus cloud-top height and geometric thickness are investigated. Results show that retrievals based on the 8.5- and 11.0-μm bispectral approach are most valid for cloud-top temperatures of less than 224 K with visible optical thickness values between 2 and 5. The present retrievals are also compared with the collection-5 MODIS level-2 ice cloud product.

Corresponding author address: Kevin J. Garrett, Dept. of Atmospheric Sciences, 3150 TAMU, College Station, TX 77843. Email: kjgarrett@tamu.edu

Abstract

The retrieval of ice cloud microphysical and optical properties from satellite-based infrared observation remains a challenging research topic, partly because of the sensitivity of observed infrared radiances to many surface and atmospheric parameters that vary on fine spatial and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness. To illustrate the sensitivity, the authors first simulate brightness temperatures at 8.5 and 11.0 μm using the discrete ordinates radiative transfer (DISORT) model for five cloud-top heights ranging from 8 to 16 km and for varying cloud geometric thicknesses of 1, 2, 3, and 5 km. The simulations are performed across a range of visible optical thicknesses from 0.1 to 10 and ice cloud effective diameters from 30 to 100 μm. Furthermore, the effective particle size and optical thickness of ice clouds are retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements on the basis of a lookup-table approach. Specifically, the infrared brightness temperatures are simulated from the collocated Atmospheric Infrared Sounder (AIRS) level-2 product at 28 atmospheric levels and prescribed ice cloud parameters. Variations of the retrieved effective particle size and optical thickness versus cloud-top height and geometric thickness are investigated. Results show that retrievals based on the 8.5- and 11.0-μm bispectral approach are most valid for cloud-top temperatures of less than 224 K with visible optical thickness values between 2 and 5. The present retrievals are also compared with the collection-5 MODIS level-2 ice cloud product.

Corresponding author address: Kevin J. Garrett, Dept. of Atmospheric Sciences, 3150 TAMU, College Station, TX 77843. Email: kjgarrett@tamu.edu

Save