• Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58 , 26502667.

    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., O. L. L. Moraes, G. A. Degrazia, and L. E. Medeiros, 2006: Intermittency and the exchange of scalars in the nocturnal surface layer. Bound.-Layer Meteor., 119 , 4155.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90 , 297325.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., and K. C. Crawford, 2001: The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automated quality control. Bull. Amer. Meteor. Soc., 82 , 21732187.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and G. G. Lala, 1989: Hudson Valley fog environments. J. Appl. Meteor., 28 , 13031328.

  • Gallo, K. P., 2005: Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network. J. Climate, 18 , 16291636.

    • Search Google Scholar
    • Export Citation
  • Geiger, R., 1950: The Climate near the Ground. Harvard University Press, 482 pp.

  • Gustavsson, T., M. Karlsson, M. Bogren, and S. Lindqvist, 1998: Development of temperature patterns during clear nights. J. Appl. Meteor., 37 , 559571.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. Chen, and J. J. Toth, 1989: Circulations associated with a mature-to-decaying midlatitude mesoscale convective system. Part I: Surface features—Heat bursts and mesolow development. Mon. Wea. Rev., 117 , 942959.

    • Search Google Scholar
    • Export Citation
  • Knupp, K., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63 , 20162035.

    • Search Google Scholar
    • Export Citation
  • Kurzeja, R. J., S. Berman, and A. H. Weber, 1991: A climatological study of the nocturnal planetary boundary layer. Bound.-Layer Meteor., 54 , 105128.

    • Search Google Scholar
    • Export Citation
  • Lee, X., 1997: Gravity waves in a forest: A linear analysis. J. Atmos. Sci., 54 , 25742585.

  • LeMone, M. A., and Coauthors, 2000: Land–atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull. Amer. Meteor. Soc., 81 , 757779.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., K. Ikeda, R. L. Grossman, and M. W. Rotach, 2003: Horizontal variability of 2-m temperature at night during CASES-97. J. Atmos. Sci., 60 , 24312449.

    • Search Google Scholar
    • Export Citation
  • MacDermaid, C., R. C. Lipschutz, P. Hildreth, R. A. Ryan, A. B. Stanley, M. F. Barth, and P. A. Miller, 2005: Architecture of MADIS data processing and distribution at FSL. 21st Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Diego, CA, Amer. Meteor. Soc., P2.39. [Available online at http://ams.confex.com/ams/pdfpapers/86227.pdf.].

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1981: The early evening boundary layer transition. Quart. J. Roy. Meteor. Soc., 107 , 329343.

  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1997: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88 , 255278.

  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52 , 16021614.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54 , 6987.

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. Yang, M. K. Ramamurthy, and B. F. Jewett, 2001: Origin, evolution, and finescale structure of the St. Valentine’s Day mesoscale gravity wave observed during STORM-FEST. Part I: Origin and evolution. Mon. Wea. Rev., 129 , 198217.

    • Search Google Scholar
    • Export Citation
  • Reina, N., and L. Mahrt, 2005: A study of intermittent turbulence with CASES-99 tower measurements. Bound.-Layer Meteor., 114 , 367387.

    • Search Google Scholar
    • Export Citation
  • ReVelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Appl. Meteor., 32 , 11691180.

  • Sanders, F., and E. Kessler, 1999: Frontal analysis in the light of abrupt temperature changes in a shallow valley. Mon. Wea. Rev., 127 , 11251133.

    • Search Google Scholar
    • Export Citation
  • Saucier, W. J., 1955: Principles of Meteorological Analysis. Dover Press, 438 pp.

  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112 , 16341639.

  • Shapiro, M. A., T. Hampel, D. Rotzoll, and F. Mosher, 1985: The frontal hydraulic head: A micro-α scale (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113 , 11661183.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105 , 199219.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110 , 255279.

    • Search Google Scholar
    • Export Citation
  • Uccelini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115 , 721729.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. de Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60 , 25092522.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106 , 85100.

    • Search Google Scholar
    • Export Citation
  • Weber, A. H., and R. J. Kurzeja, 1991: Nocturnal planetary boundary layer structure and turbulence episodes during the Project STABLE field program. J. Appl. Meteor., 30 , 11171133.

    • Search Google Scholar
    • Export Citation
  • White, L. D., and E. Matlack, 2007: The Mississippi Mesonet: Phase 2. 16th Conf. on Applied Climatology, San Antonio, TX, Amer. Meteor. Soc., JP1.6. [Available online at http://ams.confex.com/ams/pdfpapers/119231.pdf.].

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. F. J. De Wekker, and T. Haiden, 2007: Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J. Appl. Meteor. Climatol., 46 , 313.

    • Search Google Scholar
    • Export Citation
  • Zachariassen, J., K. F. Zeller, N. Nikolov, and T. McClelland, 2003: A review of the Forest Service Remote Automated Weather Station (RAWS) network. Gen. Tech. Rep. RMRSGTR-119, Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, 153 pp. [Available online at http://www.fs.fed.us/rm/pubs/rmrs_gtr119.pdf.].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 33
PDF Downloads 6 6 6

Sudden Nocturnal Warming Events in Mississippi

View More View Less
  • 1 Jackson State University, Jackson, Mississippi
Restricted access

Abstract

Significant episodes of sudden nocturnal warming have been observed by the Mississippi Mesonet. The probable relation of these nocturnal warming events to surface layer regime transitions between a decoupled quiescent surface layer and a more turbulent, less thermodynamically stable surface layer is discussed within the context of four examples with different temporal signatures. In general, the changes in wind speed and inversion strength are consistent with expectations for such regime changes. However, details of individual events indicate a wider variety of event characteristics than has been documented previously. The cases examined are proposed as prototypes for four different types of warming event, based on the evolution of temperature and dewpoint as well as on whether clear forcing from a mesoscale or synoptic frontal passage can be identified. Using this classification system and a subjective evaluation of event magnitude, the frequency of nocturnal warming events is analyzed for four mesonet stations at varying distance inland over the period of record.

Corresponding author address: Loren White, Dept. of Physics, Atmospheric Science, and Geoscience, P.O. Box 17660, Jackson State University, Jackson, MS 39217. Email: loren.d.white@jsums.edu

Abstract

Significant episodes of sudden nocturnal warming have been observed by the Mississippi Mesonet. The probable relation of these nocturnal warming events to surface layer regime transitions between a decoupled quiescent surface layer and a more turbulent, less thermodynamically stable surface layer is discussed within the context of four examples with different temporal signatures. In general, the changes in wind speed and inversion strength are consistent with expectations for such regime changes. However, details of individual events indicate a wider variety of event characteristics than has been documented previously. The cases examined are proposed as prototypes for four different types of warming event, based on the evolution of temperature and dewpoint as well as on whether clear forcing from a mesoscale or synoptic frontal passage can be identified. Using this classification system and a subjective evaluation of event magnitude, the frequency of nocturnal warming events is analyzed for four mesonet stations at varying distance inland over the period of record.

Corresponding author address: Loren White, Dept. of Physics, Atmospheric Science, and Geoscience, P.O. Box 17660, Jackson State University, Jackson, MS 39217. Email: loren.d.white@jsums.edu

Save