• Baum, B. A., , A. J. Heymsfield, , P. Yang, , and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., , T. S. L’Ecuyer, , and G. L. Stephens, 2003: The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances. J. Geophys. Res., 108 , 4107. doi:10.1029/2002JD002611.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., , and J. D. Spinhirne, 1996: Split-window retrieval of particle size and optical depth in contrails located above horizontally inhomogeneous ice clouds. Geophys. Res. Lett., 23 , 37113714.

    • Search Google Scholar
    • Export Citation
  • Eleftheratos, K., , C. S. Zerefos, , P. Zanis, , D. S. Balis, , G. Tselioudis, , K. Gierens, , and R. Sausen, 2007: A study on natural and manmade global interannual fluctuations of cirrus cloud cover for the period 1984–2004. Atmos. Chem. Phys., 7 , 26312642.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., , J. C. Buriez, , Y. Fouquart, , F. Parol, , and G. Seze, 1997: Large-scale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor., 36 , 664675.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2003: Rapid daytime estimation of cloud properties over a large area from radiance distributions. J. Atmos. Oceanic Technol., 20 , 12371250.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., , and G. L. Stephens, 2000: Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the O2 A band. J. Atmos. Sci., 57 , 16151634.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 micron window region. J. Meteor. Soc. Japan, 63 , 8899.

    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., , L. L. Stowe, , G. Ohring, , A. Heidinger, , K. Knapp, , and N. R. Nalli, 2003: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84 , 785793.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Li, J., , W. Wolf, , W. P. Menzel, , P. F. van Delst, , H. M. Woolf, , T. H. Achtor, , and A. H. Huang, 1998: International ATOVS processing package: Algorithm design and its preliminary performance. Optical Remote Sensing of the Atmosphere and Clouds, J. Wang et al., Eds., (SPIE Proceedings, Vol. 3501), 196–206.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., , and C. D. Rodgers, 1993: A retrieval method for atmospheric composition from limb emission measurements. J. Geophys. Res., 98 , 1493914953.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47 , 11751198.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., , G. L. Stephens, , C. K. Drummond, , A. K. Heidinger, , and P. T. Partain, 2000: A multisensor diagnostic satellite cloud property retrieval scheme. J. Geophys. Res., 105 , 1995519972.

    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., , J. Schmetz, , and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32 , 15591568.

    • Search Google Scholar
    • Export Citation
  • Parol, F., , J. C. Buriez, , G. Brogniez, , and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30 , 973984.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., , A. K. Heidinger, , and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44 , 804826.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys., 14 , 609624.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612288.

  • Schwalb, A., 1982: The TIROS-N/NOAA A-G satellite series. NOAA Tech. Memo. NESS 95, 75 pp.

  • Seemann, S. W., , E. E. Borbas, , R. O. Knuteson, , G. R. Stephenson, , and H-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear-sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47 , 108123.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., , H. Jacobowitz, , G. Ohring, , K. R. Knapp, , and N. R. Nalli, 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15 , 12431260.

    • Search Google Scholar
    • Export Citation
  • Travis, D. J., , A. M. Carleton, , and S. A. Changnon, 1997: An empirical model to predict widespread occurrences of contrails. J. Appl. Meteor., 36 , 12111220.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., , S. A. Young, , D. M. Winker, , K. A. Powell, , A. H. Omar, , Z. Liu, , Y. Hu, , and C. A. Hostetler, 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., (SPIE Proceedings, Vol. 5575), 16–30.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 , D15S02. doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 17
PDF Downloads 70 70 20

Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology

View More View Less
  • 1 NOAA/NESDIS Center for Satellite Applications and Research, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

This paper demonstrates that the split-window approach for estimating cloud properties can improve upon the methods commonly used for generating cloud temperature and emissivity climatologies from satellite imagers. Because the split-window method provides cloud properties that are consistent for day and night, it is ideally suited for the generation of a cloud climatology from the Advanced Very High Resolution Radiometer (AVHRR), which provides sampling roughly four times per day. While the split-window approach is applicable to all clouds, this paper focuses on its application to cirrus (high semitransparent ice clouds), where this approach is most powerful. An optimal estimation framework is used to extract estimates of cloud temperature, cloud emissivity, and cloud microphysics from the AVHRR split-window observations. The performance of the split-window approach is illustrated through the diagnostic quantities generated by the optimal estimation approach. An objective assessment of the performance of the algorithm cloud products from the recently launched space lidar [Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO/CALIOP)] is used to characterize the performance of the AVHRR results and also to provide the constraints needed for the optimal estimation approach.

Corresponding author address: Andrew Heidinger, NOAA/NESDIS Center for Satellite Applications and Research, 1225 West Dayton St., Madison, WI 53705. Email: andrew.heidinger@noaa.gov

Abstract

This paper demonstrates that the split-window approach for estimating cloud properties can improve upon the methods commonly used for generating cloud temperature and emissivity climatologies from satellite imagers. Because the split-window method provides cloud properties that are consistent for day and night, it is ideally suited for the generation of a cloud climatology from the Advanced Very High Resolution Radiometer (AVHRR), which provides sampling roughly four times per day. While the split-window approach is applicable to all clouds, this paper focuses on its application to cirrus (high semitransparent ice clouds), where this approach is most powerful. An optimal estimation framework is used to extract estimates of cloud temperature, cloud emissivity, and cloud microphysics from the AVHRR split-window observations. The performance of the split-window approach is illustrated through the diagnostic quantities generated by the optimal estimation approach. An objective assessment of the performance of the algorithm cloud products from the recently launched space lidar [Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO/CALIOP)] is used to characterize the performance of the AVHRR results and also to provide the constraints needed for the optimal estimation approach.

Corresponding author address: Andrew Heidinger, NOAA/NESDIS Center for Satellite Applications and Research, 1225 West Dayton St., Madison, WI 53705. Email: andrew.heidinger@noaa.gov

Save