• Atlas, D., , and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16 , 13221331.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and C. R. Williams, 2003: The anatomy of a continental tropical convective storm. J. Atmos. Sci., 60 , 315.

  • Atlas, D., , and C. Ulbrich, 2006: Drop size spectra and integral remote sensing parameters in the transition from convective to stratiform rain. Geophys. Res. Lett., 33 , L16803. doi:10.1029/2006GL026824.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , R. C. Srivastava, , and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , C. W. Ulbrich, , F. D. Marks Jr., , E. Amitai, , and C. R. Williams, 1999: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res., 104 , 61556169.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , D. Rosenfield, , D. Short, , R. A. Black, , E. Amitai, , P. T. Willis, , and C. E. Samsury, 2000: Partitioning tropical oceanic convective and stratiform rain by draft strength. J. Geophys. Res., 105 , 22592267.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., , W. L. Ecklund, , D. A. Carter, , A. C. Riddle, , and K. S. Gage, 1988: Average vertical motions in the tropical atmosphere observed by a radar wind profiler on Pohnpei (7°N latitude, 157°E longitude). J. Atmos. Sci., 45 , 396405.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., , and S. A. Listemma, 2000: An improved scheme for convective stratiform echo classification using radar reflectivity. J. Appl. Meteor., 39 , 21292148.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , and S. A. Rutledge, 1994: Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51 , 26312652.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., 1983: A survey of radar rain measurement techniques. J. Climate Appl. Meteor., 22 , 832849.

  • Gossard, E. E., 1988: Measuring drop-size distributions in clouds with a clear–air-sensing Doppler radar. J. Atmos. Oceanic Technol., 5 , 640649.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., , and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6 , 233248.

  • Hong, Y. C., , C. D. Kummerow, , and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteor., 38 , 11951213.

    • Search Google Scholar
    • Export Citation
  • Huggel, A. W., , W. Schmid, , and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35 , 16881701.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1991: The effect of drop size distribution variability on radiometric estimation of rainfall rates for frequencies from 3 to 10 GHz. J. Appl. Meteor., 30 , 10251033.

    • Search Google Scholar
    • Export Citation
  • Jones, D. M. A., 1959: The shape of raindrops. J. Meteor., 16 , 504510.

  • Joss, J., , and E. G. Gori, 1978: Shape of raindrop size distributions. J. Appl. Meteor., 17 , 10541061.

  • Kirankumar, N. V. P., , T. N. Rao, , B. Radhakrishna, , and D. N. Rao, 2008: Statistical characteristics of raindrop size distribution in southwest monsoon season. J. Appl. Meteor. Climatol., 47 , 576590.

    • Search Google Scholar
    • Export Citation
  • Kishore, K. K., , A. R. Jain, , and D. N. Rao, 2005: VHF/UHF radar observations of tropical mesoscale convective systems over southern India. Ann. Geophys., 23 , 16731683.

    • Search Google Scholar
    • Export Citation
  • Konwar, M., , D. K. Sarma, , S. Sharma, , U. K. De, , S. Pal, , and J. Das, 2008: Estimation of rain parameters from the spectral moments of L-band wind profiler by using Multilayer Perceptron Network model. Indian J. Radio Space Phys., 37 , 341352.

    • Search Google Scholar
    • Export Citation
  • Maki, M., , T. D. Keenan, , Y. Sasaki, , and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40 , 13931412.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Rajopadhyaya, D. K., , P. T. May, , R. C. Cifelli, , S. K. Avery, , C. R. Williams, , W. L. Ecklund, , and K. S. Gage, 1998: The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol., 15 , 13061319.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., , S. K. Avery, , P. T. May, , and R. C. Cifelli, 1999: Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Oceanic Technol., 16 , 165173.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., 1995: Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering. J. Atmos. Oceanic Technol., 12 , 257267.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , D. W. van de Kamp, , and D. C. Law, 1995: Using spectral moment data from NOAA’s 404-MHz radar wind profilers to observe precipitation. Bull. Amer. Meteor. Soc., 76 , 17171739.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and D. Ruffieux, 1996: Precipitation identification from radar wind profiler spectral moment data: Vertical velocity histograms, velocity variance, and signal power–vertical velocity correlations. J. Atmos. Oceanic Technol., 13 , 545559.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., , D. N. Rao, , and S. Raghavan, 1999: Tropical precipitating system observed with Indian MST radar. Radio Sci., 34 , 11251139.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., , D. N. Rao, , K. Mohan, , and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res., 106 , 1769917711.

    • Search Google Scholar
    • Export Citation
  • Reddy, K. K., , and T. Kozu, 2003: Measurement of rain drop size distribution over Gadanki during south–west and north–east monsoon. Indian J. Radio Space Phys., 32 , 286295.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., , and J. P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci., 52 , 10701083.

  • Sharma, S., , D. K. Sarma, , M. Konwar, , J. Das, , and A. R. Jain, 2008: Retrieval of rain drop size distribution from the L-band and VHF wind profilers during convective and stratiform rain. Indian J. Radio Space Phys., 37 , 185196.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and W. F. Krajewski, 1993: A modeling study of rainfall rate-reflectivity relationships. Water Resour. Res., 29 , 25052514.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze Jr., , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , J. A. Smith, , and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61 , 11141131.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., , J. D. Marwitz, , J. C. Pace, , and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41 , 32273237.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , S. Oury, , R. A. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of the rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 506531.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , D. A. Short, , C. R. Williams, , W. L. Ecklund, , and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurement. J. Appl. Meteor., 38 , 302320.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , A. Kruger, , and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , D. B. Wolff, , K. R. Wolff, , and P. Bashor, 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20 , 14601477.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., , and D. Atlas, 2002: On the separation of tropical convective and stratiform rains. J. Appl. Meteor., 41 , 188195.

  • Ulbrich, C. W., , and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46 , 17771791.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., , C. Kummerow, , W. S. Olson, , and Y. Hong, 2000: Combined use of radar and radiometer of TRMM to estimate the influence of drop size distribution on rain retrievals. J. Appl. Meteor., 39 , 21032114.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Williams, C. R., , W. L. Ecklund, , and K. S. Gage, 1995: Classification of precipitating clouds in the tropic using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12 , 9961012.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., , A. Kruger, , K. S. Gage, , A. Tokay, , R. Cifelli, , W. F. Krajewski, , and C. Kummerow, 2000: Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiler. Geophys. Res. Lett., 27 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., , and P. Tattelman, 1989: Drop size distribution associated with intense rainfall. J. Appl. Meteor., 28 , 315.

  • Yuter, S. E., , and R. A. Houze Jr., 1997: Measurements of raindrop size distribution over the Pacific warm pool and implementation for ZR relations. J. Appl. Meteor., 36 , 847867.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 7
PDF Downloads 29 29 7

Characteristics of Rain Integral Parameters during Tropical Convective, Transition, and Stratiform Rain at Gadanki and Its Application in Rain Retrieval

View More View Less
  • 1 Department of Physics, Kohima Science College, Kohima, India
  • | 2 Indian Institute of Tropical Meteorology, Pune, India
  • | 3 National Physical Laboratory, New Delhi, India
© Get Permissions
Restricted access

Abstract

In the present study the characteristics of rain integral parameters during tropical convective (C), transition (T), and stratiform (S) types of rain are studied with the help of Joss–Waldvogel disdrometer (JWD), L-band, and very-high-frequency wind profilers at Gadanki (13.5°N, 79.20°E). The classifications of three regimes are made with the help of an L-band wind profiler. For rain rate R < 10 mm h−1 larger drops are found in S type of rain relative to C and T rain, and for R ≥ 10 mm h−1 larger drops are found in convective rain. Empirical relations are developed for DmR, DmZ, N*0R, ZR, and Z/DmR by fitting the power-law equations. Event to event, no systematic variation of the coefficients and exponents could be found for ZR and Z/DmR relations during the three types of rain. Overall, the C and S events are found to be number controlled, and T events are size controlled. During C type of rain, bigger mean raindrops are found during the presence of strong updrafts. During S type of rain, bigger mean raindrops are found to be associated with the higher mean thickness of the bright band and strong velocity gradient. For each of the developed empirical relations, the correlation coefficients are found in the order of T > C > S rain. During the three types of rain, correlations are found in the order of Z/DmR > ZR > DmZ > DmR. Significant improvement is observed in rain retrieval by using the Z/DmR relation relative to the conventional ZR relation. By utilizing the Z/DmR relations, the root-mean-square error was reduced by 19%–46%.

Corresponding author address: Dr. Sanjay Sharma, Department of Physics, Kohima Science College, Jotsoma, Kohima, Nagaland 797 002, India. Email: sanjay_sharma11@hotmail.com

Abstract

In the present study the characteristics of rain integral parameters during tropical convective (C), transition (T), and stratiform (S) types of rain are studied with the help of Joss–Waldvogel disdrometer (JWD), L-band, and very-high-frequency wind profilers at Gadanki (13.5°N, 79.20°E). The classifications of three regimes are made with the help of an L-band wind profiler. For rain rate R < 10 mm h−1 larger drops are found in S type of rain relative to C and T rain, and for R ≥ 10 mm h−1 larger drops are found in convective rain. Empirical relations are developed for DmR, DmZ, N*0R, ZR, and Z/DmR by fitting the power-law equations. Event to event, no systematic variation of the coefficients and exponents could be found for ZR and Z/DmR relations during the three types of rain. Overall, the C and S events are found to be number controlled, and T events are size controlled. During C type of rain, bigger mean raindrops are found during the presence of strong updrafts. During S type of rain, bigger mean raindrops are found to be associated with the higher mean thickness of the bright band and strong velocity gradient. For each of the developed empirical relations, the correlation coefficients are found in the order of T > C > S rain. During the three types of rain, correlations are found in the order of Z/DmR > ZR > DmZ > DmR. Significant improvement is observed in rain retrieval by using the Z/DmR relation relative to the conventional ZR relation. By utilizing the Z/DmR relations, the root-mean-square error was reduced by 19%–46%.

Corresponding author address: Dr. Sanjay Sharma, Department of Physics, Kohima Science College, Jotsoma, Kohima, Nagaland 797 002, India. Email: sanjay_sharma11@hotmail.com

Save