• An, S-I., , and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , D. L. T. Anderson, , and M. K. Davey, 1994: ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46A , 497511.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., , N. Graham, , S. Pazan, , W. White, , M. Latif, , and M. Flügel, 1993: ENSO and ENSO-related predictability. I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J. Climate, 6 , 15451566.

    • Search Google Scholar
    • Export Citation
  • Basnett, T., , and D. E. Parker, 1997: Development of the global mean sea level pressure data set GMSLP2. Hadley Centre Tech. Note CRTN 79, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , M. A. Cane, , A. Kaplan, , S. E. Zebiak, , and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428 , 733736.

    • Search Google Scholar
    • Export Citation
  • Da Silva, A. M., , C. C. Young, , and S. Levitus, 1994: Algorithms and Procedures. Vol. 1. Atlas of Surface Marine Data, NOAA Atlas NESDIS 6, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Deng, Z., , and Y. Tang, 2008: The retrospective prediction of El Niño–Southern Oscillation from 1881 to 2000 by a hybrid coupled model: (II) Interdecadal and decadal variations in predictability. Climate Dyn., 32 , 415428.

    • Search Google Scholar
    • Export Citation
  • Deng, Z., , Y. Tang, , and X. Zhou, 2008: The retrospective prediction of El Niño–Southern Oscillation from 1881 to 2000 by a hybrid coupled model: (I): Sea surface temperature assimilation with ensemble Kalman filter. Climate Dyn., 32 , 397413.

    • Search Google Scholar
    • Export Citation
  • Eckert, C., , and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., , and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. Elsevier, 650 pp.

  • Galanti, E., , E. Tziperman, , M. Harrison, , A. Rosati, , and Z. Sirkes, 2003: A study of ENSO prediction using a hybrid coupled model and the adjoint method for data assimilation. Mon. Wea. Rev., 131 , 27482764.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., , L. F. Bliven, , S. R. Long, , and P. S. Deleonibus, 1986: A study of the relationship among wind speed, sea state, and the drag coefficient for a developing wave field. J. Geophys. Res., 91 , 77337742.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14 , 17801789.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437470.

  • Kaplan, A., , M. Cane, , Y. Kushnir, , A. Clement, , M. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., , and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2007: Revised prediction of seasonal Atlantic basin tropical cyclone activity from 1 August. Wea. Forecasting, 22 , 937949.

    • Search Google Scholar
    • Export Citation
  • Kohavi, R., 1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Joint Conf. on Artificial Intelligence, Montreal, QC, Canada, Amer. Meteor. Soc., 1137–1143.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , and A. Kaplan, 1994: Dynamical constraints for the analysis of sea level pressure and surface wind over the world ocean. Proc. Int. Winds Workshop, Annapolis, MD, Amer. Meteor. Soc., 91–101.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Institut Pierre- Simon Laplace (IPSL), Note du Pôle de modélisation 27, 193 pp.

  • Moore, A. M., , and R. Kleeman, 1998: Skill assessment for ENSO using ensemble prediction. Quart. J. Roy. Meteor. Soc., 124 , 557584.

  • Moore, A. M., and Coauthors, 2006: Optimal forcing patterns for coupled models of ENSO. J. Climate, 19 , 46834699.

  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and J. K. Gibson, 2000: The ERA-40 project plan. ECMWF ERA-40 Project Report Series 1, 63 pp.

  • Smith, T. M., , and R. W. Reynolds, 1998: A high-resolution global sea surface temperature climatology for the 1961–90 base period. J. Climate, 11 , 33203323.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2002: Bias corrections for historic sea surface temperatures based on marine air temperatures. J. Climate, 15 , 7387.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Smith, T. M., , R. W. Reynolds, , R. E. Livezey, , and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Stricherz, J. N., , D. M. Legler, , and J. J. O. Brien, 1997: TOGA pseudo-stress atlas 1985–1994: II Tropical Pacific Ocean. COAPS Rep. 97-2, 177 pp.

    • Search Google Scholar
    • Export Citation
  • Syu, H-H., , J. D. Neelin, , and D. Gutzler, 1995: Seasonal and interannual variability in a hybrid coupled GCM. J. Climate, 8 , 21212143.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , and W. W. Hsieh, 2001: Coupling neural networks to incomplete dynamical systems via variational data assimilation. Mon. Wea. Rev., 129 , 818834.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , and W. W. Hsieh, 2002: Hybrid coupled models of the tropical Pacific. II: ENSO prediction. Climate Dyn., 19 , 343353.

  • Tang, Y., , and W. W. Hsieh, 2003: ENSO simulation and prediction using a hybrid coupled model with data assimilation. J. Meteor. Soc. Japan, 81 , 119.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , R. Kleeman, , and A. Moore, 2004: SST assimilation experiments in a tropical Pacific Ocean model. J. Phys. Oceanogr., 34 , 623642.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , R. Kleeman, , and A. Moore, 2005: Reliability of ENSO dynamical predictions. J. Atmos. Sci., 62 , 17701791.

  • Tang, Y., , Z. Deng, , X. Zhou, , Y. Cheng, , and D. Chen, 2008: Interdecadal variation of ENSO predictability in multiple models. J. Climate, 21 , 48114833.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Trigo, R. M., , I. F. Trigo, , C. C. DaCamara, , and T. J. Osborn, 2004: Climate impact of the European winter blocking episodes from the NCEP/NCAR reanalyses. Climate Dyn., 23 , 1728.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., , A. Sen Gupta, , M. J. Pook, , and M. H. England, 2008: Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Climate, 21 , 51135134.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , A. Clement, , and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89 , 81. doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17 , 25262540.

  • Xue, M., , D-H. Wang, , J-D. Gao, , K. Brewster, , and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Search Google Scholar
    • Export Citation
  • Yuval, , and W. W. Hsieh, 2002: The impact of time-averaging on the detectability of nonlinear empirical relations. Quart. J. Roy. Meteor. Soc., 128 , 16091622.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1990: Diagnostic studies of Pacific surface winds. J. Climate, 3 , 10161031.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 1
PDF Downloads 3 3 1

Reconstructing the Past Wind Stresses over the Tropical Pacific Ocean from 1875 to 1947

View More View Less
  • 1 Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

An important step in understanding the climate system is simulating and studying the past climate variability, using oceanic models, atmospheric models, or both. Toward this goal, long-term wind stress data, as the forcing of oceanic or climate models, are often required. In this study, the possibility of reconstructing the past winds of the tropical Pacific Ocean using historical sea surface temperature (SST) and sea level pressure (SLP) datasets was explored. Four statistical models, based on principal component (PC) regression and singular vector decomposition (SVD), were developed for reconstructing monthly pseudo wind stress over the tropical Pacific for the period 1875–1947. The high-frequency noise was removed from the raw data prior to the reconstruction. These models are SST-based PC regression (model 1), SLP-based PC regression (model 2), SST-based SVD (model 3), and SLP-based SVD (model 4). The results show that reconstructed wind stresses from all models can account for more than one-half of the total variances. In general, the SLP is better than SST as a predictor and the SVD method is superior to the PC regression. Forced by these reconstructed wind stresses, an oceanic general circulation model can simulate realistic interannual variability of the tropical Pacific SST. However, the wind stress reconstructed by SST-based models leads to better simulation skill in comparison with that from SLP-based models. Last, a long-term wind stress dataset was constructed for the period from 1875 to 1947 by the SST-based SVD model, which provides a useful tool for studying the past climate variability over the tropical Pacific, especially for El Niño–Southern Oscillation.

Corresponding author address: Youmin Tang, Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada. Email: ytang@unbc.ca

Abstract

An important step in understanding the climate system is simulating and studying the past climate variability, using oceanic models, atmospheric models, or both. Toward this goal, long-term wind stress data, as the forcing of oceanic or climate models, are often required. In this study, the possibility of reconstructing the past winds of the tropical Pacific Ocean using historical sea surface temperature (SST) and sea level pressure (SLP) datasets was explored. Four statistical models, based on principal component (PC) regression and singular vector decomposition (SVD), were developed for reconstructing monthly pseudo wind stress over the tropical Pacific for the period 1875–1947. The high-frequency noise was removed from the raw data prior to the reconstruction. These models are SST-based PC regression (model 1), SLP-based PC regression (model 2), SST-based SVD (model 3), and SLP-based SVD (model 4). The results show that reconstructed wind stresses from all models can account for more than one-half of the total variances. In general, the SLP is better than SST as a predictor and the SVD method is superior to the PC regression. Forced by these reconstructed wind stresses, an oceanic general circulation model can simulate realistic interannual variability of the tropical Pacific SST. However, the wind stress reconstructed by SST-based models leads to better simulation skill in comparison with that from SLP-based models. Last, a long-term wind stress dataset was constructed for the period from 1875 to 1947 by the SST-based SVD model, which provides a useful tool for studying the past climate variability over the tropical Pacific, especially for El Niño–Southern Oscillation.

Corresponding author address: Youmin Tang, Environmental Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada. Email: ytang@unbc.ca

Save