• Abshire, J. B., , X. Sun, , H. Riris, , J. M. Sirota, , J. F. McGarry, , S. Palm, , D. Yi, , and P. Liiva, 2005: Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett., 32 , L21S02. doi:10.1029/2005GL024028.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., , U. Wandinger, , M. Riebesell, , C. Weitkamp, , and W. Michaelis, 1992: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31 , 71137131.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 1993: Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989: The 18 October 1989 case study and statistical analysis. J. Appl. Meteor., 32 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Beyerle, G., , H-J. Schafer, , R. Neuber, , O. Schrems, , and I. S. McDermid, 1998: Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 96 campaign. Geophys. Res. Lett., 25 , 919922.

    • Search Google Scholar
    • Export Citation
  • Beyerle, G., and Coauthors, 2001: A lidar and backscatter sonde measurement campaign at Table Mountain during February–March 1997: Observations of cirrus clouds. J. Atmos. Sci., 58 , 12751287.

    • Search Google Scholar
    • Export Citation
  • Cadet, B., , L. Goldfarb, , D. Faduilhe, , S. Baldy, , V. Giraud, , P. Keckhut, , and A. Réchou, 2003: A sub-tropical cirrus cloud climatology from Réunion Island (21°S, 55°E) lidar data set. Geophys. Res. Lett., 30 , 1130. doi:10.1029/2002GL016342.

    • Search Google Scholar
    • Export Citation
  • Cadet, B., , V. Giraud, , M. Haeffelin, , P. Keckhut, , A. Rechou, , and S. Baldy, 2005: Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods. Appl. Opt., 44 , 17261734.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., , D. L. Hlavka, , E. J. Welton, , C. J. Flynn, , D. D. Turner, , J. D. Spinhirne, , V. S. Scott III, , and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19 , 431442.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87 , 912926.

    • Search Google Scholar
    • Export Citation
  • Chazette, P., , J. Pelon, , and G. Mégie, 2001: Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. Appl. Opt., 40 , 34283440.

    • Search Google Scholar
    • Export Citation
  • Chen, W-N., , C-W. Chiang, , and J-B. Nee, 2002: Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt., 41 , 64706476.

  • Chervet, P., , and A. Roblin, 2006: High-altitude cloud effects on airborne electro-optical sensor performance. J. Atmos. Oceanic Technol., 23 , 15301538.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , T. P. Ackerman, , and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 , 4714. doi:10.1029/JD002203.

    • Search Google Scholar
    • Export Citation
  • DelGuasta, M., , M. Morandi, , L. Stefanutti, , J. Brechet, , and J. Piquad, 1993: One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties. J. Geophys. Res., 98 , 1857518587.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16 , 12411247.

    • Search Google Scholar
    • Export Citation
  • Eguchi, N., , T. Yokota, , and G. Inoue, 2007: Characteristics of cirrus clouds from ICESat/GLAS observations. Geophys. Res. Lett., 34 , L09810. doi:10.1029/2007GL029529.

    • Search Google Scholar
    • Export Citation
  • Flamant, P., , G. Brogniez, , M. Desbois, , Y. Fouquart, , J-F. Flobert, , J-C. Vanhoutte, , and U. Nat Singh, 1989: High altitude cloud observations by ground-based lidar, infrared radiometer and METEOSAT measurements. Ann. Geophys., 7 , 110.

    • Search Google Scholar
    • Export Citation
  • Giannakaki, E., , V. Amiridis, , and D. Balis, 2004: Cirrus measurements with a Raman lidar over Thessaloniki, Greece, during EARLINET. Proc. 22th Int. Laser Radar Conf., Matera, Italy, ESA SP 561, 37–40.

    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P., , F. Barnaba, , and L. Ammannato, 2004: The vertical distribution of aerosols, Saharan dust and cirrus clouds in Rome (Italy) in the year 2001. Atmos. Chem. Phys., 4 , 351359.

    • Search Google Scholar
    • Export Citation
  • Goldfarb, L., , P. Keckhut, , M-L. Chanin, , and A. Hauchecorne, 2001: Cirrus climatological results from lidar measurements at OHP (44°N, 6°E). Geophys. Res. Lett., 28 , 16871690.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Hlavka, D. L., , S. P. Palm, , W. D. Hart, , J. D. Spinhirne, , M. J. McGill, , and E. J. Welton, 2005: Aerosol and cloud optical depth from GLAS: Results and verification for an October 2003 California fire smoke case. Geophys. Res. Lett., 32 , L22S07. doi:10.1029/2005GL023413.

    • Search Google Scholar
    • Export Citation
  • Imasu, R., , and Y. Iwasaka, 1991: Characteristics of cirrus clouds observed by laser radar (lidar) during the spring of 1987 and the winter of 1987/88. J. Meteor. Soc. Japan, 69 , 401410.

    • Search Google Scholar
    • Export Citation
  • Immler, F., , and O. Schrems, 2002a: Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements. Geophys. Res. Lett., 29 , 2090. doi:10.1029/2002GL015076.

    • Search Google Scholar
    • Export Citation
  • Immler, F., , and O. Schrems, 2002b: LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study. Geophys. Res. Lett., 29 , 1809. doi:10.1029/2002GL015077.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Strom-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meter. Soc., 78 , 19171940.

    • Search Google Scholar
    • Export Citation
  • Keckhut, P., , F. Borchi, , S. Bekki, , A. Hauchecorne, , and M. SiLaouina, 2006: Cirrus classification at midlatitude from systematic lidar observations. J. Appl. Meteor. Climatol., 45 , 249258.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., and Coauthors, 1993: Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE). Bull. Amer. Meteor. Soc., 74 , 205214.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , A. J. Heymsfield, , J. Spinhirne, , and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Morille, Y., , M. Haeffelin, , P. Drobinski, , and J. Pelon, 2007: STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Oceanic Technol., 24 , 761775.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , and M. Haeffelin, 2007: Midlatitude cirrus clouds and multiple tropopauses from a 2002–2006 climatology over the SIRTA observatory. J. Geophys. Res., 112 , D13206. doi:10.1029/2006JD007753.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , D. M. Winker, , T. J. Garrett, , and M. McGill, 2007: Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE. Atmos. Chem. Phys., 7 , 14151422.

    • Search Google Scholar
    • Export Citation
  • Pace, G., , M. Cacciani, , A. di Sarra, , G. Fiocco, , and D. Fua, 2003: Lidar observations of equatorial cirrus clouds at Mahe Seychelles. J. Geophys. Res., 108 , 4236. doi:10.1029/2002JD002710.

    • Search Google Scholar
    • Export Citation
  • Palm, S., , W. Hart, , D. Hlavka, , E. J. Welton, , and J. Spinhirne, 2002: Geoscience Laser Altimeter System (GLAS) atmospheric data products—Algorithm theoretical basis document (version 4.2). Goddard Space Flight Center, Greenbelt, MD, 137 pp.

    • Search Google Scholar
    • Export Citation
  • Parameswaran, K., , S. V. Sunilkumar, , B. V. Krishna Murthy, , and K. Satheesan, 2004: Lidar observations of high altitude cirrus clouds near the tropical tropopause. Adv. Space Res., 34 , 845850.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Platt, C. M. R., 1981: Remote sensing of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns. J. Atmos. Sci., 38 , 156167.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , and A. C. Dilley, 1979: Remote sounding of high clouds: II. Emissivity of cirrostratus. J. Appl. Meteor., 18 , 11441150.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , S. C. Scott, , and A. C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci., 44 , 729747.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M., and Coauthors, 1994: The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research. Bull. Amer. Meteor. Soc., 75 , 16351654.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , S. A. Young, , P. J. Manson, , G. R. Patterson, , S. C. Marsden, , R. T. Austin, , and J. H. Churnside, 1998: The optical properties of equatorial cirrus from observations in the ARM Pilot Radiation Observation Experiment. J. Atmos. Sci., 55 , 19771996.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , S. A. Young, , R. T. Austin, , G. R. Patterson, , D. L. Mitchell, , and S. D. Miller, 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus. J. Atmos. Sci., 59 , 31453162.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., 1999: Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar. Phys. Chem. Earth, 24B , 255260.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Sassen, K., , and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and S. Benson, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58 , 21032112.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58 , 481496.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58 , 21132127.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , C. J. Grund, , J. D. Spinhirne, , M. M. Hardesty, , and J. M. Alvarez, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: A five lidar overview of cloud structure and evolution. Mon. Wea. Rev., 118 , 22882311.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , J. M. Comstock, , Z. Wang, , and G. G. Mace, 2001: Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc., 82 , 11191138.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , J. Zhu, , and S. Benson, 2003: Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays. Appl. Opt., 42 , 332341.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , L. Wang, , D. O’C. Starr, , J. M. Comstock, , and M. Quante, 2007: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part V: Cloud structural properties. J. Atmos. Sci., 64 , 24832501.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113 , D00A12. doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Schutz, B. E., , H. J. Zwally, , C. A. Shuman, , D. Hancock, , and J. P. DiMarzio, 2005: Overview of the ICESat mission. Geophys. Res. Lett., 32 , L21S01. doi:10.1029/2005GL024009.

    • Search Google Scholar
    • Export Citation
  • Scott, N. A., and Coauthors, 1999: Characteristics of the TOVS Pathfinder Path-B dataset. Bull. Amer. Meteor. Soc., 80 , 26792701.

  • Seifert, P., , A. Ansmann, , D. Muller, , U. Wandinger, , D. Althausen, , A. J. Heymsfield, , S. T. Massie, , and C. Schmitt, 2007: Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon. J. Geophys. Res., 112 , D17205. doi:10.1029/2006JD008352.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , S. P. Palm, , W. D. Hart, , D. L. Hlavka, , and E. J. Welton, 2005a: Cloud and aerosol measurements from GLAS: Overview and initial results. Geophys. Res. Lett., 32 , L22S03. doi:10.1029/2005GL023507.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , A. Chédin, , R. Armante, , and N. A. Scott, 1999a: Clouds as seen by infrared sounders (3I) and imagers (ISCCP). Part II: A new approach for cloud parameter determination in the 3I algorithms. J. Climate, 12 , 22142223.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , W. B. Rossow, , N. A. Scott, , and A. Chedin, 1999b: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part III: Spatial heterogeneity and radiative effects. J. Climate, 12 , 34193442.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , F. Eddounia, , and L. Sauvage, 2005: Cloud heights from TOVS Path-B: Evaluation using LITE observations and distributions of highest cloud layers. J. Geophys. Res., 110 , D19203. doi:10.1029/2004JD005447.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , A. Chedin, , G. Radel, , N. A. Scott, , and S. Serrar, 2006: Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19 , 55315553.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., , S. Cros, , N. Lamquin, , R. Armante, , A. Chédin, , C. Crevoisier, , and N. A. Scott, 2008: Cloud properties from Atmospheric Infrared Sounder and evaluation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. J. Geophys. Res., 113 , D00A10. doi:10.1029/2008JD009928.

    • Search Google Scholar
    • Export Citation
  • Sunilkumar, S. V., , K. Parameswaran, , and B. V. Krishna Murthy, 2003: Lidar observations of cirrus cloud near the tropical tropopause: General features. Atmos. Res., 66 , 203227.

    • Search Google Scholar
    • Export Citation
  • Veerabuthiran, S., , and M. Satyanarayana, 2004: Lidar observations of cirrus clouds at low latitude tropical station, Trivandrum (8°33′N, 77°E): General characteristics. Proc 22th Int. Laser Radar Conf., Matera, Italy, ESA SP 561, 399–402.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40 , 16651682.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part II: Midlatitude cirrus microphysical and radiative properties. J. Atmos. Sci., 59 , 22912302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., , and B. Demoz, 2004: Subtropical cirrus cloud extinction to backscatter ratios measured by Raman lidar during CAMEX-3. Geophys. Res. Lett., 31 , L12105. doi:10.1029/2004GL020003.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , and M. A. Vaughan, 1994: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs. Atmos. Res., 34 , 117133.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , and C. R. Trepte, 1998: Laminar cirrus observed near the tropical tropopause by LITE. Geophys. Res. Lett., 25 , 33513354.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., , W. H. Hunt, , and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , and W. P. Menzel, 1999: Eight years of cloud statistics using HIRS. J. Climate, 12 , 170184.

  • Wylie, D. P., , W. P. Menzel, , H. M. Woolf, , and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 19721986.

    • Search Google Scholar
    • Export Citation
  • Wylie, D., , P. Piironen, , W. Wolf, , and E. Eloranta, 1995: Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths. J. Atmos. Sci., 52 , 43274343.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34 , 70197031.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 7
PDF Downloads 19 19 2

Comparison of High-Cloud Characteristics as Estimated by Selected Spaceborne Observations and Ground-Based Lidar Datasets

View More View Less
  • * Centre National de la Recherche Scientifique, Laboratoire Atmosphères, Milieux, Observation Spatiale, Vélizy-Villacoublay, France
  • | + Université de Versailles Saint-Quentin-en-Yvelines, Vélizy-Villacoublay, France
  • | # Laboratoire d’Optique Atmosphérique, CNRS, Villeneuve d’Ascq, France
  • | @ Département d’Optique Théorique et Appliquée, ONERA, Palaiseau, France
  • | 5 CNRS, Institut Pierre Simon Laplace, Palaiseau, France
  • | * *Ecole Polytechnique, Palaiseau, France
  • | ++ Ecole Nationale Supérieure des Sciences Appliquées et de Technologie, Lannion, France
  • | ## Laboratoire de Météorologie Dynamique, CNRS, Palaiseau and Paris, France
  • | @@ Université Pierre et Marie Curie, Paris, France
© Get Permissions
Restricted access

Abstract

The characterization of high clouds as performed from selected spaceborne observations is assessed in this article by employing a number of worldwide ground-based lidar multiyear datasets as reference. Among the latter, the ground lidar observations conducted at Lannion, Bretagne (48.7°N, 3.5°W), and Palaiseau, near Paris [the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) observatory: 48.7°N, 2.2°E], both in France, are discussed in detail. High-cloud altitude statistics at these two sites were found to be similar. Optical thicknesses disagree, and possible reasons were analyzed. Despite the variety of instruments, observation strategies, and methods of analysis employed by different lidar groups, high-cloud optical thicknesses from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat) were found to be consistent on the latitude band 40°–60°N. Respective high-cloud altitudes agree within 1 km with respect to those from ground lidars at Lannion and Palaiseau; such a finding remains to be verified under other synoptic regimes. Mean altitudes of high clouds from Lannion and Palaiseau ground lidars were compared with altitudes of thin cirrus from the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Path-B 8-yr climatology for a common range of optical thicknesses (0.1–1.4). Over both sites, the annual altitude distribution of thin high clouds from TOVS Path-B is asymmetric, with a peak around 8–9.5 km, whereas the distribution of high clouds retrieved from ground lidars seems symmetric with a peak around 9.5–11.5 km. Additional efforts in standardizing ground lidar observation and processing methods, and in merging high-cloud statistics from complementary measuring platforms, are recommended.

Corresponding author address: Artemio Plana-Fattori, Laboratoire Atmosphères, Milieux, Observation Spatiale, 10–12 Ave. de l’Europe, 78140 Vélizy-Villacoublay, France. Email: artemio.planafattori@latmos.ipsl.fr

Abstract

The characterization of high clouds as performed from selected spaceborne observations is assessed in this article by employing a number of worldwide ground-based lidar multiyear datasets as reference. Among the latter, the ground lidar observations conducted at Lannion, Bretagne (48.7°N, 3.5°W), and Palaiseau, near Paris [the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) observatory: 48.7°N, 2.2°E], both in France, are discussed in detail. High-cloud altitude statistics at these two sites were found to be similar. Optical thicknesses disagree, and possible reasons were analyzed. Despite the variety of instruments, observation strategies, and methods of analysis employed by different lidar groups, high-cloud optical thicknesses from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat) were found to be consistent on the latitude band 40°–60°N. Respective high-cloud altitudes agree within 1 km with respect to those from ground lidars at Lannion and Palaiseau; such a finding remains to be verified under other synoptic regimes. Mean altitudes of high clouds from Lannion and Palaiseau ground lidars were compared with altitudes of thin cirrus from the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) Path-B 8-yr climatology for a common range of optical thicknesses (0.1–1.4). Over both sites, the annual altitude distribution of thin high clouds from TOVS Path-B is asymmetric, with a peak around 8–9.5 km, whereas the distribution of high clouds retrieved from ground lidars seems symmetric with a peak around 9.5–11.5 km. Additional efforts in standardizing ground lidar observation and processing methods, and in merging high-cloud statistics from complementary measuring platforms, are recommended.

Corresponding author address: Artemio Plana-Fattori, Laboratoire Atmosphères, Milieux, Observation Spatiale, 10–12 Ave. de l’Europe, 78140 Vélizy-Villacoublay, France. Email: artemio.planafattori@latmos.ipsl.fr

Save