Theoretical Assessment of Uncertainty in Regional Averages due to Network Density and Design

Debasish PaiMazumder Geophysical Institute, and Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Debasish PaiMazumder in
Current site
Google Scholar
PubMed
Close
and
Nicole Mölders Geophysical Institute, and Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by Nicole Mölders in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Weather Research and Forecasting (WRF) model simulations are performed over Russia for July and December 2005, 2006, and 2007 to create a “dataset” to assess the impact of network density and design on regional averages. Based on the values at all WRF grid points, regional averages for various quantities are calculated for 2.8° × 2.8° areas as the “reference.” Regional averages determined based on 40 artificial networks and 411 “sites” that correspond to the locations of a real network are compared with the reference regional averages. The 40 networks encompass 10 networks of 500, 400, 200, or 100 different randomly taken WRF grid points as sites. The real network’s site distribution misrepresents the landscape. This misrepresentation leads to errors in regional averages that show geographical and temporal trends for most quantities: errors are lower over shores of large lakes than coasts and lowest over flatland followed by low and high mountain ranges; offsets in timing occur during frontal passages when several sites are passed at nearly the same time. Generally, the real network underestimates regional averages of sea level pressure, wind speed, and precipitation over Russia up to 4.8 hPa (4.8 hPa), 0.7 m s−1 (0.5 m s−1), and 0.2 mm day−1 and overestimates regional averages of 2-m temperature, downward shortwave radiation, and soil temperature over Russia up to 1.9 K (1.4 K), 19 W m−2 (14 W m−2), and 1.5 K (1.8 K) in July (December). The low density of the ten 100-site networks causes difficulties for sea level pressure. Regional averages obtained from the 30 networks with 200 or more randomly distributed sites represent the reference regional averages, trends, and variability for all quantities well.

Corresponding author address: Nicole Mölders, Geophysical Institute, 903 Koyukuk Drive, Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Abstract

Weather Research and Forecasting (WRF) model simulations are performed over Russia for July and December 2005, 2006, and 2007 to create a “dataset” to assess the impact of network density and design on regional averages. Based on the values at all WRF grid points, regional averages for various quantities are calculated for 2.8° × 2.8° areas as the “reference.” Regional averages determined based on 40 artificial networks and 411 “sites” that correspond to the locations of a real network are compared with the reference regional averages. The 40 networks encompass 10 networks of 500, 400, 200, or 100 different randomly taken WRF grid points as sites. The real network’s site distribution misrepresents the landscape. This misrepresentation leads to errors in regional averages that show geographical and temporal trends for most quantities: errors are lower over shores of large lakes than coasts and lowest over flatland followed by low and high mountain ranges; offsets in timing occur during frontal passages when several sites are passed at nearly the same time. Generally, the real network underestimates regional averages of sea level pressure, wind speed, and precipitation over Russia up to 4.8 hPa (4.8 hPa), 0.7 m s−1 (0.5 m s−1), and 0.2 mm day−1 and overestimates regional averages of 2-m temperature, downward shortwave radiation, and soil temperature over Russia up to 1.9 K (1.4 K), 19 W m−2 (14 W m−2), and 1.5 K (1.8 K) in July (December). The low density of the ten 100-site networks causes difficulties for sea level pressure. Regional averages obtained from the 30 networks with 200 or more randomly distributed sites represent the reference regional averages, trends, and variability for all quantities well.

Corresponding author address: Nicole Mölders, Geophysical Institute, 903 Koyukuk Drive, Fairbanks, AK 99775-7320. Email: molders@gi.alaska.edu

Save
  • Anthes, R. A., 1984: Enhancement of convectionale precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23 , 541554.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y. H. Kuo, E. Y. Hsie, S. Low-Nam, and T. W. Bettge, 1989: Estimation of skill and uncertainty in regional numerical models. Quart. J. Roy. Meteor. Soc., 115 , 763806.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117 , 21132136.

    • Search Google Scholar
    • Export Citation
  • Baker, P. H., G. H. Galbraith, R. C. McLean, C. Hunter, and C. H. Sanders, 2006: The measurement and prediction of conditions within indoor microenvironments. Indoor Built Environ., 15 , 357364.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., and R. J. Chorley, 1992: Atmosphere, Weather and Climate. 6th ed. Routledge, 392 pp.

  • Bauer, M., A. D. Del Genio, and J. R. Lanzante, 2002: Observed and simulated temperature–humidity relationship: Sensitivity to sampling analysis. J. Climate, 15 , 203215.

    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., and P. H. Whitfield, 2002: Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol., 259 , 136151.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., E. G. Dutton, J. J. DeLuisi, and F. Jiang, 1991: Determining surface solar absorption from broadband satellite measurements for clear skies: Comparison with surface measurement. J. Climate, 4 , 236247.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., R. A. Pielke, T. G. F. Kittel, R. Nemani, and S. W. Running, 1996: The sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101 , 73937408.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Court, A., and M. T. Bare, 1984: Basin precipitation estimates by Bethlahmy’s two-axis method. J. Hydrol., 68 , 149158.

  • Creutin, J. D., and C. Obled, 1982: Objective analysis and mapping techniques for rainfall fields: An objective comparison. Water Resour. Res., 15 , 17521762.

    • Search Google Scholar
    • Export Citation
  • Daily, C., W. P. Gibson, G. H. Taylor, M. K. Doggett, and J. I. Smith, 2007: Observer bias in daily precipitation measurement at U.S. cooperative network stations. Bull. Amer. Meteor. Soc., 88 , 899912.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and K. L. Brubaker, 1995: An analytical approach to modeling land-atmosphere interaction. 2. Stochastic formulation. Water Resour. Res., 31 , 633643.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high resolution rain-gauge observation. Int. J. Climatol., 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Goody, R., J. Anderson, T. Karl, R. B. Miller, G. North, J. Simpson, G. Stephens, and W. Washington, 2002: Why monitor the climate? Bull. Amer. Meteor. Soc., 83 , 873878.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29 , 1693. doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., and D. R. Legates, 1994: The accuracy of U.S. precipitation data. Bull. Amer. Meteor. Soc., 75 , 215227.

  • Groisman, P. Y., V. V. Koknaeva, T. A. Belokrylova, and T. R. Karl, 1991: Overcoming biases of precipitation measurement: A history of the USSR experience. Bull. Amer. Meteor. Soc., 72 , 17251733.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1994: Mesoscale meteorological model evaluation techniques with emphasis on needs of air quality models. Mesoscale Modeling of the Atmosphere, Meteor. Monogr., No. 25, Amer. Meteor. Soc., 47–58.

    • Search Google Scholar
    • Export Citation
  • Holdaway, M. R., 1996: Spatial modeling and interpolation of monthly temperature using kriging. Climate Res., 6 , 215225.

  • Huang, S., P. M. Rich, R. L. Crabtree, C. S. Potter, and P. Fu, 2008: Modeling monthly near-surface air temperature from solar radiation and lapse rate: Application over complex terrain in Yellowstone National Park. Phys. Geogr., 29 , 158178.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Proc. 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick, 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw., 16 , 309330.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., S. C. B. Raper, R. S. Bradley, H. F. Diaz, P. M. Kelly, and T. M. L. Wigley, 1986: Northern Hemisphere surface temperature variation: 1851–1984. J. Climate Appl. Meteor., 25 , 161179.

    • Search Google Scholar
    • Export Citation
  • Kramm, G., N. Beier, T. Foken, H. Müller, P. Schröder, and W. Seiler, 1996: A SVAT scheme for NO, NO2, and O3—Model description. Meteor. Atmos. Phys., 61 , 89106.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., G. Bastin, C. Obled, and J. D. Creutin, 1987: On the accuracy of areal rainfall estimation: A case study. Water Resour. Res., 23 , 21232134.

    • Search Google Scholar
    • Export Citation
  • Lefohn, A. S., H. P. Knudsen, J. L. Logan, J. Simpson, and C. Bhumralkar, 1987: An evaluation of the kriging method to predict 7-h seasonal mean ozone concentration for estimating crop losses. J. Air Pollut. Control Assoc., 37 , 595602.

    • Search Google Scholar
    • Export Citation
  • Li, Z., H. G. Leighton, and R. D. Cess, 1993: Surface net solar radiation estimated from satellite measurements: Comparison with tower observation. J. Climate, 6 , 17641772.

    • Search Google Scholar
    • Export Citation
  • Li, Z., U. S. Bhatt, and N. Mölders, 2008: Impact of doubled CO2 on the interaction between the regional and global water cycle in four study regions. Climate Dyn., 30 , 255275.

    • Search Google Scholar
    • Export Citation
  • Lindley, S. J., and T. Walsh, 2004: Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK. Atmos. Environ., 39 , 27092724.

    • Search Google Scholar
    • Export Citation
  • Luo, W., M. C. Taylor, and S. R. Parker, 2008: A comparison of spatial interpolation methods to estimate continuous wind-speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol., 28 , 947959.

    • Search Google Scholar
    • Export Citation
  • MacWhorter, M. A., and R. A. Weller, 1991: Error in measurements of incoming shortwave radiation made from ships and buoys. J. Atmos. Oceanic Technol., 8 , 108117.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Mitchell, R. M., and D. M. O’Brien, 1987: Error estimates for passive satellite measurement of surface pressure using absorption in the band of oxygen. J. Atmos. Sci., 44 , 19811990.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of the monthly climate for Europe and the globe: The observed record (1901-2000) and 16 scenarios (2002-2100). Working Paper 55, Tyndall Centre for Climate Change Research, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102D , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and V. E. Romanovsky, 2006: Long-term evaluation of the Hydro-Thermodynamic Soil-Vegetation Scheme’s frozen ground/permafrost component using observations at Barrow, Alaska. J. Geophys. Res., 111 , D04105. doi:10.1029/2005JD005957.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., and G. Kramm, 2007: Influence of wildfire induced land cover changes on clouds and precipitation in interior Alaska—A case study. Atmos. Res., 84 , 142168.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., U. Haferkorn, J. Döring, and G. Kramm, 2003: Long-term numerical investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS)—Part II: Evaluation, sensitivity, and uncertainty. Meteor. Atmos. Phys., 84 , 137156.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., M. Jankov, and G. Kramm, 2005: Application of Gaussian error propagation principles for theoretical assessment of model uncertainty in simulated soil processes caused by thermal and hydraulic parameters. J. Hydrometeor., 6 , 10451062.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., H. Luijting, and K. Sassen, 2008: Use of Atmospheric Radiation Measurement program data from Barrow, Alaska, for evaluation and development of snow albedo parameterizations. Meteor. Atmos. Phys., 99 , 199219.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Akad. Nauk. SSSR, Geofiz. Inst. Trudy, 151 , 163187.

    • Search Google Scholar
    • Export Citation
  • Ninyerola, M., X. Pons, and J. M. Roure, 2000: A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int. J. Climatol., 20 , 18231841.

    • Search Google Scholar
    • Export Citation
  • PaiMazumder, D., J. Miller, Z. Li, J. E. Walsh, A. Etringer, J. McCreight, T. Zhang, and N. Mölders, 2008: Evaluation of Community Climate System Model soil-temperatures using observations from Russia. Theor. Appl. Climatol., 94 , 187213.

    • Search Google Scholar
    • Export Citation
  • Palutikof, J. P., J. A. Winkler, C. M. Goodess, and J. A. Andresen, 1997: The simulation of daily temperature time series from GCM output. Part I: Comparison of model data with observation. J. Climate, 10 , 24972531.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., 2006: Examination of potential biases in air temperature caused by poor station locations. Bull. Amer. Meteor. Soc., 87 , 10731080.

    • Search Google Scholar
    • Export Citation
  • Phillips, D. L., E. H. Lee, A. A. Herstrom, W. E. Hogsett, and D. T. Tingley, 1997: Use of auxiliary data for the spatial interpolation of ozone exposure on southeastern forests. Environmetrics, 8 , 4361.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., and Coauthors, 2007: Documentation of uncertainties and biases associated with surface temperature measurement sites for climate change assessment. Bull. Amer. Meteor. Soc., 88 , 913928.

    • Search Google Scholar
    • Export Citation
  • Robeson, S. M., and J. A. Doty, 2005: Identifying rogue air temperature station using cluster analysis of percentile trends. J. Climate, 18 , 12751287.

    • Search Google Scholar
    • Export Citation
  • Rolland, C., 2003: Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J. Climate, 16 , 10321046.

  • Romanovsky, V. E., T. S. Sazonova, V. T. Balobaev, N. I. Shender, and D. O. Sergueev, 2007: Past and recent changes in air and permafrost temperatures in eastern Siberia. Global Planet. Change, 56 , 399413.

    • Search Google Scholar
    • Export Citation
  • Shaw, E. M., and P. P. Lynn, 1972: Areal rainfall evaluation using two surface fitting techniques. Hydrol. Sci. Bull., 17 , 419433.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Baker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125 , 18701884.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold season processes in the MAPS land-surface scheme. J. Geophys. Res., 105D , 40774086.

    • Search Google Scholar
    • Export Citation
  • Spindler, G., N. Mölders, J. Hansz, N. Beier, and G. Kramm, 1996: Determining the dry deposition of SO2, O3, NO, and NO2 at the SANA core station Melpitz. Meteor. Z., 5 , 205220.

    • Search Google Scholar
    • Export Citation
  • St-Hilaire, A., T. B. M. J. Ouarda, M. Lachance, B. Bobée, J. Gaudet, and C. Gignac, 2003: Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: A case study. Hydrol. Processes, 17 , 35613580.

    • Search Google Scholar
    • Export Citation
  • Tabios III, G. Q., and J. D. Salas, 1985: A comparative analysis of the techniques for spatial interpolation of precipitation. J. Amer. Water Resour. Assoc., 21 , 365380.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Tsintikidis, D., K. P. Georgakakos, J. A. Sperfslage, D. E. Smith, and T. M. Carpenter, 2002: Precipitation uncertainty and rain gauge network design within Folsom Lake watershed. J. Hydrol. Eng., 7 , 175184.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences. Academic Press, 467 pp.

  • Willmott, C. J., 1984: On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 443–460.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., R. G. Barry, and D. Gilichinsky, 2001: Russian historical soil-temperature data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://www.nisdc.org].

    • Search Google Scholar
    • Export Citation
  • Zhong, S., H-J. In, X. Bian, J. Charney, W. Heilman, and B. Potter, 2005: Evaluation of real-time high-resolution MM5 predictions over the Great Lakes region. Wea. Forecasting, 20 , 6381.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 37 2
PDF Downloads 64 16 1