Remote Sensing of Cloud-Top Pressure Using Moderately Resolved Measurements within the Oxygen A Band—A Sensitivity Study

Rene Preusker Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rene Preusker in
Current site
Google Scholar
PubMed
Close
and
Rasmus Lindstrot Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rasmus Lindstrot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reflected solar radiation measured by the Medium Resolution Imaging Spectrometer (MERIS) on the Environmental Satellite (Envisat) is currently used within the European Space Agency’s ground segment for the retrieval of cloud-top pressure. The algorithm is based on the analysis of the gaseous absorption of solar radiation in the oxygen A band at 761 nm. The strength of absorption is directly related to the average photon pathlength, which is mainly determined by the cloud-top pressure. However, it additionally depends on surface and cloud properties, like cloud thickness and microphysics. The interpretation of the measurements is further complicated by the temperature dependence of the absorption line shapes and the sensitivity to the spectral properties of the spectrometer like spectral position and width. This paper is focused on results of sensitivity studies using the Matrix Operator Model (MOMO) radiative transfer model that examine the most important parameters affecting the measurements of MERIS or similar instruments. The cloud-top pressure retrieval scheme is briefly presented. An analysis of the information content and the degrees of freedom of measurements within the oxygen A band is included in this study.

Corresponding author address: R. Preusker, Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. Email: rene.preusker@wew.fu-berlin.de

Abstract

Reflected solar radiation measured by the Medium Resolution Imaging Spectrometer (MERIS) on the Environmental Satellite (Envisat) is currently used within the European Space Agency’s ground segment for the retrieval of cloud-top pressure. The algorithm is based on the analysis of the gaseous absorption of solar radiation in the oxygen A band at 761 nm. The strength of absorption is directly related to the average photon pathlength, which is mainly determined by the cloud-top pressure. However, it additionally depends on surface and cloud properties, like cloud thickness and microphysics. The interpretation of the measurements is further complicated by the temperature dependence of the absorption line shapes and the sensitivity to the spectral properties of the spectrometer like spectral position and width. This paper is focused on results of sensitivity studies using the Matrix Operator Model (MOMO) radiative transfer model that examine the most important parameters affecting the measurements of MERIS or similar instruments. The cloud-top pressure retrieval scheme is briefly presented. An analysis of the information content and the degrees of freedom of measurements within the oxygen A band is included in this study.

Corresponding author address: R. Preusker, Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. Email: rene.preusker@wew.fu-berlin.de

Save
  • Aguirre, M., and Coauthors, 2007: Sentinel-3, the ocean and medium-resolution land mission for GMES operational services. ESA Bull., 131 , 2429.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Fischer, 2000: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared. J. Quant. Spectrosc. Radiat. Transf., 66 , 539553.

    • Search Google Scholar
    • Export Citation
  • Buriez, J., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER (processing algorithms). Int. J. Remote Sens., 18 , 27852813.

    • Search Google Scholar
    • Export Citation
  • Burrows, J., and Coauthors, 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56 , 151175.

    • Search Google Scholar
    • Export Citation
  • Crisp, D., and Coauthors, 2004: The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res., 34 , 700709.

  • Delwart, S., R. Preusker, L. Bourg, R. Santer, D. Ramon, and J. Fischer, 2007: MERIS in-flight spectral calibration. Int. J. Remote Sens., 28 , 479496.

    • Search Google Scholar
    • Export Citation
  • Fell, F., and J. Fischer, 2001: Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J. Quant. Spectrosc. Radiat. Transf., 69 , 351388.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and H. Grassl, 1984: Radiative transfer in an atmosphere–ocean system: An azimuthally dependent matrix-operator approach. Appl. Opt., 23 , 10321039.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and H. Grassl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study. J. Appl. Meteor., 30 , 12451259.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., W. Cordes, A. Schmitz-Pfeifer, W. Renger, and P. Mörl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements. J. Appl. Meteor., 30 , 12601267.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., R. Preusker, and L. Schüller, 1997: ATBD 2.3 cloud top pressure. Algorithm Theoretical Basis Doc. PO-TN-MEL-GS-0006, European Space Agency, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Young, 1989: Atmospheric Radiation: Theoretical Basis. 2nd ed. Oxford University Press, 519 pp.

  • Hansen, J., 1971: Multiple scattering of polarized light in planetary atmospheres. Part II: Sunlight reflected by terrestrial water clouds. J. Atmos. Sci., 28 , 14001426.

    • Search Google Scholar
    • Export Citation
  • Huot, J-P., H. Tait, M. Rast, S. Delwart, J-L. Bézy, and G. Levrini, 2001: The optical imaging instruments and their applications: AATSR and MERIS. ESA Bull., 106 , 5666.

    • Search Google Scholar
    • Export Citation
  • Kuze, A., and K. V. Chance, 1994: Analysis of cloud top height and coverage from satellites using the O2 A and B bands. J. Geophys. Res., 99 , 1448114491.

    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., R. Preusker, T. Ruhtz, B. Heese, M. Wiegner, C. Lindemann, and J. Fischer, 2006: Validation of MERIS cloud top pressure using airborne lidar measurements. J. Appl. Meteor. Climatol., 45 , 16121621.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53 , 28132825.

  • McClatchey, R., R. Fenn, J. Selby, F. Volz, and J. Garing, 1972: Optical Properties of the Atmosphere. 3rd ed. Air Force Cambridge Research Laboratories, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22 , 377384.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, B. A. Baum, and H. Zhang, 2006: Cloud top properties and cloud phase algorithm theoretical basis document. Algorithm Theoretical Basis Doc. MOD04, Cooperative Institute for Meteorological Satellite Studies, 56 pp.

    • Search Google Scholar
    • Export Citation
  • Merheim-Kealy, P., J. P. Huot, and S. Delwart, 1999: The MERIS ground segment. Int. J. Remote Sens., 20 , 17031712.

  • O’Brien, D., and R. Mitchell, 1992: Error estimates for retrieval of cloud-top pressure using absorption in the A band of oxygen. J. Appl. Meteor., 31 , 11791192.

    • Search Google Scholar
    • Export Citation
  • Rast, M., J. L. Bezy, and S. Bruzzi, 1999: The ESA Medium Resolution Imaging Spectrometer MERIS—A review of the instrument and its mission. Int. J. Remote Sens., 20 , 16811702.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 240 pp.

  • Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 96 , 139204.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and A. K. Heidinger, 2000: Molecular line absorption in a scattering atmosphere: Part I. Theory. J. Atmos. Sci., 57 , 15991614.

    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., J. Buriez, F. Parol, B. Bonnel, G. Seze, and P. Couvert, 1998: Apparent pressure derived from ADEOS-POLDER observations in the oxygen A-band over ocean. Geophys. Res. Lett., 25 , 31593162.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19 , 15051509.

  • Wu, M-L. C., 1985: Remote sensing of cloud-top pressure using reflected solar radiation in the oxygen A-band. J. Climate Appl. Meteor., 24 , 539546.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., and D. Wark, 1961: Discussion of the letter by R. A. Hanel: Determination of cloud altitude from a satellite. J. Geophys. Res., 66 , 3569.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1069 756 251
PDF Downloads 201 61 9