Assessment of the Quality of MODIS Cloud Products from Radiance Simulations

Seung-Hee Ham School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seung-Hee Ham in
Current site
Google Scholar
PubMed
Close
,
Byung-Ju Sohn School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Byung-Ju Sohn in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
, and
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS), the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat are synergistically used to evaluate the accuracy of theoretical simulations of the radiances at the top of the atmosphere (TOA). Specifically, TOA radiances of 15 MODIS bands are simulated for overcast, optically thick, and single-phase clouds only over the ocean from 60°N to 60°S, corresponding to about 12% of all the MODIS cloud observations. Plane parallel atmosphere is assumed in the simulation by restricting viewing/solar zenith angle to be less than 40°. Input data for the radiative transfer model (RTM) are obtained from the operational MODIS-retrieved cloud optical thickness, effective radius, and cloud-top pressure (converted to height) collocated with the AIRS-retrieved temperature and humidity profiles. In the RTM, ice cloud bulk scattering properties, based on theoretical scattering computations and in situ microphysical data, are used for the radiative transfer simulations. The results show that radiances for shortwave bands between 0.466 and 0.857 μm appear to be very accurate with errors on the order of 5%, implying that MODIS cloud parameters provide sufficient information for the radiance simulations. However, simulated radiances for the 1.24-, 1.63-, and 3.78-μm bands do not agree as well with the observed radiances as a result of the use of a single effective radius for a cloud layer that may be vertically inhomogeneous in reality. Furthermore, simulated radiances for the water vapor absorption bands located near 0.93 and 1.38 μm show positive biases, whereas the window bands from 8.5 to 12 μm show negative biases compared to observations, likely due to the less accurate estimate of cloud-top and cloud-base heights. It is further shown that the accuracies of the simulations for water vapor and window bands can be substantially improved by accounting for the vertical cloud distribution provided by the CALIPSO and CloudSat measurements.

Corresponding author address: Prof. Byung-Ju Sohn, School of Earth and Environmental Sciences, Seoul National University, NS 80, Seoul 151-747, South Korea. Email: sohn@snu.ac.kr

Abstract

Observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS), the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat are synergistically used to evaluate the accuracy of theoretical simulations of the radiances at the top of the atmosphere (TOA). Specifically, TOA radiances of 15 MODIS bands are simulated for overcast, optically thick, and single-phase clouds only over the ocean from 60°N to 60°S, corresponding to about 12% of all the MODIS cloud observations. Plane parallel atmosphere is assumed in the simulation by restricting viewing/solar zenith angle to be less than 40°. Input data for the radiative transfer model (RTM) are obtained from the operational MODIS-retrieved cloud optical thickness, effective radius, and cloud-top pressure (converted to height) collocated with the AIRS-retrieved temperature and humidity profiles. In the RTM, ice cloud bulk scattering properties, based on theoretical scattering computations and in situ microphysical data, are used for the radiative transfer simulations. The results show that radiances for shortwave bands between 0.466 and 0.857 μm appear to be very accurate with errors on the order of 5%, implying that MODIS cloud parameters provide sufficient information for the radiance simulations. However, simulated radiances for the 1.24-, 1.63-, and 3.78-μm bands do not agree as well with the observed radiances as a result of the use of a single effective radius for a cloud layer that may be vertically inhomogeneous in reality. Furthermore, simulated radiances for the water vapor absorption bands located near 0.93 and 1.38 μm show positive biases, whereas the window bands from 8.5 to 12 μm show negative biases compared to observations, likely due to the less accurate estimate of cloud-top and cloud-base heights. It is further shown that the accuracies of the simulations for water vapor and window bands can be substantially improved by accounting for the vertical cloud distribution provided by the CALIPSO and CloudSat measurements.

Corresponding author address: Prof. Byung-Ju Sohn, School of Earth and Environmental Sciences, Seoul National University, NS 80, Seoul 151-747, South Korea. Email: sohn@snu.ac.kr

Save
  • Ackerman, S. A., and G. L. Stephens, 1987: The absorption of solar radiation by cloud droplets: An application of anomalous diffraction theory. J. Atmos. Sci., 44 , 15741588.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys., 24 , 379390.

    • Search Google Scholar
    • Export Citation
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., and B. A. Wielicki, 1994: Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors. J. Appl. Meteor., 33 , 107117.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, and S. T. Bedka, 2005b: Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44 , 18961911.

    • Search Google Scholar
    • Export Citation
  • Fishbein, E., and Coauthors, 2007: AIRS Version 5 Release Level 2 Standard Product QuickStart. [Available online at http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_L2_Standard_Product_QuickStart.pdf].

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. Doelling, 1991: On the net radiative effectiveness of clouds. J. Geophys. Res., 96 , 869891.

  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57 , 916938.

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, W. Hall, and T. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, H-L. Huang, B. A. Baum, Y. X. Hu, and S. Platnick, 2007: The sensitivity of ice cloud optical and microphysical passive satellite retrievals to cloud geometrical thickness. IEEE Trans. Geosci. Remote Sens., 45 , 13151323.

    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., B. Wielicki, B. Lin, G. Gibson, S-C. Tsay, K. Stamnes, and T. Wong, 2000: δ-Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting. J. Quant. Spectrosc. Radiat. Transfer, 65 , 681690.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., E. Fishbein, S. L. Nasiri, A. Eldering, E. J. Fetzer, M. J. Garay, and S-Y. Lee, 2007: The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals. J. Geophys. Res., 112 , D09201. doi:10.1029/2006JD007486.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2008: Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount. Atmos. Chem. Phys., 8 , 12311248.

    • Search Google Scholar
    • Export Citation
  • Kandel, R., and Coauthors, 1998: The ScaRaB Earth radiation budget dataset. Bull. Amer. Meteor. Soc., 79 , 765783.

  • King, M. D., 1983: Number of terms required in the Fourier expansion of the reflection function for optically thick atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 30 , 143161.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document ATBD-MOD-05, 83 pp.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. A. Hubanks, G. T. Arnold, E. G. Moody, G. Wind, and B. Wind, 2006: Collection 005 change summary for the MODIS cloud optical property (06_OD) algorithm. [Available online at http://modis-atmos.gsfc.nasa.gov/C005_Changes/C005_CloudOpticalProperties_ver311.pdf].

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53 , 501517.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61 , 8395.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Academic Press, 577 pp.

  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34 , L09808. doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, B. A. Baum, and H. Zhang, 2006: Cloud top properties and cloud phase algorithm. MODIS Algorithm Theoretical Basis Document ATBD-MOD-04, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47 , 11751198.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithm for radiative intensity calculations in moderate thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40 , 5169.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47 , 28952910.

    • Search Google Scholar
    • Export Citation
  • Palmer, K. F., and D. Williams, 1974: Optical properties of water in the near infrared. J. Opt. Soc. Amer., 64 , 11071110.

  • Platnick, S., 2001: A superposition technique for deriving photon scattering statistics in plane-parallel cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 68 , 5773.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, and R. O. Knuteson, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79 , 21012114.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111 , D20210. doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens., 27 , 145153.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., T. P. Charlock, R. Kahn, J. V. Martins, L. A. Remer, P. V. Hobbs, J. Redemann, and C. K. Rutledge, 2005: EOS Terra aerosol and radiative flux validation: An overview of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment. J. Atmos. Sci., 62 , 903918.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., and E. A. Smith, 1992: The significance of cloud–radiative forcing to the general circulation on climate time scales—A satellite interpretation. J. Atmos. Sci., 49 , 845860.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, J. L. Miller Jr., and Z. Chen, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S-C. Tsay, W. J. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of Atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41 , 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. Blaisdell, and P. Rosenkranz, 2007: AIRS/AMSU/HSB version 5 level 2 quality control and error estimation. E. T. Olsen, Ed., JPL Rep., 15 pp. [Available online at http://disc.sci.gsfc.nasa.gov/giovanni/AIRS/documentation/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_L2_Quality_Control_and_Error_Estimation.pdf].

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. S. Pagano, 2006: Use of Atmospheric Infrared Sounder high–spectral resolution spectra to assess the calibration of moderate resolution imaging spectroradiometer on EOS Aqua. J. Geophys. Res., 111 , D09S05. doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61 , 26572675.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88 , 177190.

    • Search Google Scholar
    • Export Citation
  • Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34 , L17811. doi:10.1029/2007GL030676.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), 1–11.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977: The Delta–M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34 , 14081422.

    • Search Google Scholar
    • Export Citation
  • Xiong, X., and W. L. Barnes, 2003: Early on-orbit calibration results from Aqua MODIS. Sensors, Systems, and Next-Generation Satellites VI, H. Fujisada et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4881), 327–336.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 , 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H-L. Huang, S-C. Tsay, and S. A. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79–80 , 11591169.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44 , 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H-L. Huang, M. D. King, and S. Platnick, 2007: Differences between Collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45 , 28862899.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1045 761 38
PDF Downloads 263 86 6