Application and Comparison of Robust Linear Regression Methods for Trend Estimation

Andreas Muhlbauer Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Andreas Muhlbauer in
Current site
Google Scholar
PubMed
Close
,
Peter Spichtinger Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Peter Spichtinger in
Current site
Google Scholar
PubMed
Close
, and
Ulrike Lohmann Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.

* Current affiliation: Joint Institute for the Study of the Atmosphere and Ocean/Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Corresponding author address: Andreas Muhlbauer, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. Email: andreasm@atmos.washington.edu

Abstract

In this study, robust parametric regression methods are applied to temperature and precipitation time series in Switzerland and the trend results are compared with trends from classical least squares (LS) regression and nonparametric approaches. It is found that in individual time series statistically outlying observations are present that influence the LS trend estimate severely. In some cases, these outlying observations lead to an over-/underestimation of the trends or even to a trend masking. In comparison with the classical LS method and standard nonparametric techniques, the use of robust methods yields more reliable trend estimations and outlier detection.

* Current affiliation: Joint Institute for the Study of the Atmosphere and Ocean/Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Corresponding author address: Andreas Muhlbauer, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. Email: andreasm@atmos.washington.edu

Save
  • Agullo, J., C. Croux, and S. van Aelst, 2008: The multivariate least-trimmed squares estimator. J. Multivariate Anal., 99 , 311338.

  • Barbosa, S. M., M. J. Fernandes, and M. E. Silva, 2004: Nonlinear sea level trends from European tide gauge records. Ann. Geophys., 22 , 14651472.

    • Search Google Scholar
    • Export Citation
  • Begert, M., G. Seiz, T. Schlegel, M. Musa, G. Baudraz, and M. Moesch, 2003: Homogenisierung von Klimareihen der Schweiz und Bestimmung der Normwerte 1961-1990; Schlussbericht des Projekts NORM90 (Homogenization of climatic series of Switzerland and determination of the standard values 1961-1990; final report of the project NORM90). Tech. Rep. 67, MeteoSchweiz, Zürich, Switzerland, 170 pp.

    • Search Google Scholar
    • Export Citation
  • Begert, M., T. Schlegel, and W. Kirchhofer, 2005: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol., 25 , 6580.

    • Search Google Scholar
    • Export Citation
  • Bernholt, T., R. Fried, U. Gather, and I. Wegener, 2006: Modified repeated median filters. Stat. Comput., 16 , 177192.

  • Born, K., 1996: Tropospheric warming and changes in weather variability over the northern hemisphere during the period 1967-1991. Meteor. Atmos. Phys., 59 , 201215.

    • Search Google Scholar
    • Export Citation
  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432961.

    • Search Google Scholar
    • Export Citation
  • Daszykowski, M., K. Kaczmarek, Y. V. Heyden, and B. Walczak, 2007: Robust statistics in data analysis—A review. Chemometr. Intell. Lab., 85 , 203219.

    • Search Google Scholar
    • Export Citation
  • Davies, P., R. Fried, and U. Gather, 2004: Robust signal extraction for on-line monitoring data. J. Stat. Plan. Infer., 122 , 6578.

  • Draper, N., and H. Smith, 1966: Applied Regression Analysis. John Wiley and Sons, 407 pp.

  • Fried, R., T. Bernholt, and U. Gather, 2006: Repeated median and hybrid filters. Comput. Stat. Data Anal., 50 , 23132338.

  • Gervini, D., and V. J. Yohai, 2002: A class of robust and fully efficient regression estimators. Ann. Stat., 30 , 583616.

  • Gilbert, R., 1987: Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, 320 pp.

  • Hampel, F., 1971: A general qualitative definition of robustness. Ann. Math. Stat., 42 , 18871896.

  • Hampel, F., 1975: Beyond location parameters: Robust concepts and methods. Bull. Int. Stat. Inst., 46 , 375382.

  • Helsel, D. R., and R. M. Hirsch, 1992: Statistical Methods in Water Resources. 1st ed. Elsevier, 522 pp.

  • Hess, A., H. Iyer, and W. Malm, 2001: Linear trend analysis: A comparison of methods. Atmos. Environ., 35 , 52115222.

  • Hodges, J., 1967: Efficiency in normal samples and tolerance of extreme values for some estimates of location. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, Vol. 1, University of California, Berkeley, 163–168.

    • Search Google Scholar
    • Export Citation
  • Hollander, M., and I. Wolfe, 1973: Nonparametric Statistical Methods. John Wiley and Sons, 503 pp.

  • Huth, R., and P. Pokorna, 2004: Parametric versus non-parametric estimates of climatic trends. Theor. Appl. Climatol., 77 , 107112.

  • Katz, R. W., and B. Brown, 1992: Extreme events in changing climate: Variability is more important than averages. Climatic Change, 21 , 289302.

    • Search Google Scholar
    • Export Citation
  • Maronna, R. A., R. D. Martin, and V. J. Yohai, 2006: Robust Statistics. John Wiley and Sons, 403 pp.

  • Miksovsky, J., and A. Raidl, 2006: Testing for nonlinearity in European climatic time series by the method of surrogate data. Theor. Appl. Climatol., 83 , 2133.

    • Search Google Scholar
    • Export Citation
  • Norris, J., 2005: Trends in upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952 and 1997. J. Geophys. Res., 110 , D21110. doi:10.1029/2005JD006183.

    • Search Google Scholar
    • Export Citation
  • Ortiz, M. C., J. L. Palacios, L. A. Sarabia, M. G. Piangerelli, and D. Cingolani, 1996: Regression by least median squares in the calculation of transition times for calibration in chronopotentiometry. Electroanalysis, 8 , 927931.

    • Search Google Scholar
    • Export Citation
  • Pison, G., S. V. Aelst, and G. Willems, 2002: Small sample corrections for LTS and MCD. Metrika, 55 , (1–2). 111123.

  • Rousseeuw, P., 1984: Least median of squares regression. J. Amer. Stat. Assoc., 79 , 871880.

  • Rousseeuw, P., and A. Leroy, 1987: Robust Regression and Outlier Detection. John Wiley and Sons, 329 pp.

  • Rousseeuw, P., and B. van Zomeren, 1990: Unmasking multivariate outliers and leverage points. J. Amer. Stat. Assoc., 85 , 633639.

  • Rousseeuw, P., and M. Hubert, 1997: Recent developments in PROGRESS. L1-Statistical Procedures and Related Topics, Y. Dodge, Ed., Lecture Notes–Monograph Series, Vol. 31, Institute of Mathematical Statistics, 201–214.

    • Search Google Scholar
    • Export Citation
  • Rousseeuw, P., and K. van Driessen, 2006: Computing LTS regression for large data sets. Data Min. Knowl. Discovery, 12 , 2945.

  • Sachs, L., 1984: Angewandte Statistik (Applied Statistics). Springer, 552 pp.

  • Schär, C., and G. Jendritzky, 2004: Hot news from summer 2003. Nature, 432 , 559560.

  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427 , 332336.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficients based on Kendall’s tau. J. Amer. Stat. Assoc., 63 , 13791389.

  • Seneviratne, S., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443 , 205209.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Trömel, S., and C. Schönwiese, 2005: A generalized method of time series decomposition into significant components including probability assessments of extreme events and application to observational German precipitation data. Meteor. Z., 14 , 417427.

    • Search Google Scholar
    • Export Citation
  • Verboven, S., and M. Hubert, 2005: LIBRA: A MATLAB library for robust analysis. Chemometr. Intell. Lab., 75 , 127136.

  • von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wilcox, R. R., 1998: A note on the Theil-Sen regression estimator when the regressor is random and the error term is heteroscedastic. Biom. J., 40 (3) 261268.

    • Search Google Scholar
    • Export Citation
  • Willems, G., and S. van Aelst, 2005: Fast and robust bootstrap for LTS. Comput. Stat. Data Anal., 48 , 703715.

  • Zerefos, C., K. Eleftheratos, D. Balis, P. Zanis, G. Tselioudis, and C. Meleti, 2003: Evidence of impact of aviation on cirrus cloud formation. Atmos. Chem. Phys., 3 , 16331644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1268 360 41
PDF Downloads 937 207 32