Cloud Variability over the Indian Monsoon Region as Observed from Satellites

Margaret M. Wonsick Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Margaret M. Wonsick in
Current site
Google Scholar
PubMed
Close
,
Rachel T. Pinker Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
, and
Yves Govaerts European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Yves Govaerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on documenting the seasonal progression of the Asian monsoon by analyzing clouds and convection in the pre-, peak-, and postmonsoon seasons. This effort was possible as a result of the movement of Meteosat-5 over the Indian continent during the Indian Ocean Experiment (INDOEX) starting in 1998. The Meteosat-5 observations provide a unique opportunity to study in detail the daytime diurnal variability of clouds and components of the radiation budget. Hourly Meteosat-5 observations are utilized to characterize the Indian monsoon daytime cloud variability on seasonal and diurnal time scales. Distinct patterns of variability can be identified during the various stages of the monsoon cycle. The daytime (0800–1500 LST) diurnal cycle of total cloud amounts is generally flat during the premonsoon season, U shaped during peak-monsoon season, and ascending toward an afternoon peak in the postmonsoon season. Low clouds dominate the Tibetan Plateau and northern Arabian Sea while high clouds are more frequent in the southern Bay of Bengal and Arabian Sea. An afternoon peak in high clouds is most prominent in central India and the Bay of Bengal. Afternoon convection peaks earlier over water than land. Preliminary comparison of cloud amounts from Meteosat-5, International Satellite Cloud Climatology Project (ISCCP) D1, and model output from the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP–NCAR reanalysis indicates a large disparity among cloud amounts from the various sources, primarily during the peak-monsoon period. The availability of the high spatial and temporal resolution of Meteosat-5 data is important for characterizing cloud variability in regions where clouds vary strongly in time and space and for the evaluation of numerical models known to have difficulties in predicting clouds correctly in this monsoon region. This study also has implications for findings on cloud variability from polar-orbiting satellites that might not correctly represent the daily average situation.

Corresponding author address: Margaret M. Wonsick, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742. Email: mwonsick@atmos.umd.edu

Abstract

This study focuses on documenting the seasonal progression of the Asian monsoon by analyzing clouds and convection in the pre-, peak-, and postmonsoon seasons. This effort was possible as a result of the movement of Meteosat-5 over the Indian continent during the Indian Ocean Experiment (INDOEX) starting in 1998. The Meteosat-5 observations provide a unique opportunity to study in detail the daytime diurnal variability of clouds and components of the radiation budget. Hourly Meteosat-5 observations are utilized to characterize the Indian monsoon daytime cloud variability on seasonal and diurnal time scales. Distinct patterns of variability can be identified during the various stages of the monsoon cycle. The daytime (0800–1500 LST) diurnal cycle of total cloud amounts is generally flat during the premonsoon season, U shaped during peak-monsoon season, and ascending toward an afternoon peak in the postmonsoon season. Low clouds dominate the Tibetan Plateau and northern Arabian Sea while high clouds are more frequent in the southern Bay of Bengal and Arabian Sea. An afternoon peak in high clouds is most prominent in central India and the Bay of Bengal. Afternoon convection peaks earlier over water than land. Preliminary comparison of cloud amounts from Meteosat-5, International Satellite Cloud Climatology Project (ISCCP) D1, and model output from the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP–NCAR reanalysis indicates a large disparity among cloud amounts from the various sources, primarily during the peak-monsoon period. The availability of the high spatial and temporal resolution of Meteosat-5 data is important for characterizing cloud variability in regions where clouds vary strongly in time and space and for the evaluation of numerical models known to have difficulties in predicting clouds correctly in this monsoon region. This study also has implications for findings on cloud variability from polar-orbiting satellites that might not correctly represent the daily average situation.

Corresponding author address: Margaret M. Wonsick, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742. Email: mwonsick@atmos.umd.edu

Save
  • Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. C. Maddux, and M. McGill, 2008: Cloud detection with MODIS. Part II: Validation. J. Atmos. Oceanic Technol., 25 , 10731086.

    • Search Google Scholar
    • Export Citation
  • Babu, S. S., K. K. Moorthy, and S. K. Satheesh, 2004: Aerosol black carbon over Arabian Sea during intermonsoon and summer monsoon seasons. Geophys. Res. Lett., 31 , L06104. doi:10.1029/2003GL018716.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt, 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4 , 2951.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9 , 28022820.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., and W. B. Rossow, 1992: Radiometric calibration and monitoring of NOAA AVHRR data for ISCCP. Int. J. Remote Sens., 13 , 235273.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and A. Navarra, 2003: Reproducibility and predictability of Asian summer monsoon in the ECHAM4-GCM. Climate Dyn., 20 , 365379.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., and G. Kelly, 2002: Model clouds as seen from space: Comparison with geostationary imagery in the 11-μm window channel. Mon. Wea. Rev., 130 , 712722.

    • Search Google Scholar
    • Export Citation
  • Chung, C., V. Ramanathan, and J. T. Kiehl, 2002: Effects of the South Asian absorbing haze on the northeast monsoon and surface–air heat exchange. J. Climate, 15 , 24622476.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian Monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31 , 429467.

  • Gambheer, A. V., and G. S. Bhat, 2001: Diurnal variation of deep cloud systems over the Indian region using INSAT-1B pixel data. Meteor. Atmos. Phys., 78 , 215226.

    • Search Google Scholar
    • Export Citation
  • Govaerts, Y. M., M. Clerici, and N. Clerbaux, 2004: Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens., 42 , 19001914.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 11711188.

  • Hou, Y. T., K. A. Campana, K. E. Mitchell, S. K. Yang, and L. L. Stowe, 1993: Comparison of an experimental NOAA AVHRR cloud dataset with other observed and forecast cloud datasets. J. Atmos. Oceanic Technol., 10 , 833849.

    • Search Google Scholar
    • Export Citation
  • Islam, M. N., T. Hayashi, H. Uyeda, T. Terao, and K. Kikuchi, 2004: Diurnal variations of cloud activity in Bangladesh and north of the Bay of Bengal in 2000. Remote Sens. Environ., 90 , 378388.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, and M. Morrissey, 1994: An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev., 122 , 22962311.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Rear Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13 , 43664377.

  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128 , 462473.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., K-M. Kim, and C. Hsu, 2005: Observational evidence of effects of absorbing aerosols on seasonal-to-interannual anomalies of the Asian monsoon. CLIVAR Exchanges, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 7–9.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, Z. Yang, R. A. Frey, and S. A. Ackerman, 2003: High-spatial-resolution surface and cloud type classification from MODIS multispectral band measurements. J. Appl. Meteor., 42 , 204226.

    • Search Google Scholar
    • Export Citation
  • Li, X., R. T. Pinker, M. M. Wonsick, and Y. Ma, 2007: Towards improved satellite estimates of short-wave radiative fluxes: Focus on cloud detection over snow. Part I: Methodology. J. Geophys. Res., 112 , D07208. doi:10.1029/2005JD006698.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Liu, and B. Chen, 2006: Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/TERRA measurements with surface observations. Geophys. Res. Lett., 33 , L17716. doi:10.1029/2006GL026890.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and R. T. Pinker, 2008: Radiative fluxes from satellites: Focus on aerosols. J. Geophys. Res., 113 , D08208. doi:10.1029/2007JD008736.

    • Search Google Scholar
    • Export Citation
  • Liu, H., R. T. Pinker, and B. Holben, 2005: A global view of aerosols from merged transport models, satellite, and ground observations. J. Geophys. Res., 110 , D10S15. doi:10.1029/2004JD004695.

    • Search Google Scholar
    • Export Citation
  • Liu, H., R. T. Pinker, M. Chin, B. Holben, and L. Remer, 2008: Synthesis of information on aerosol optical properties. J. Geophys. Res., 113 , D07206. doi:10.1029/2007JD008735.

    • Search Google Scholar
    • Export Citation
  • McGarry, M. M., and R. J. Reed, 1978: Diurnal variations in convective activity and precipitation during Phases II and III of GATE. Mon. Wea. Rev., 106 , 101113.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1983: Analysis of the deep convective activity over the western Pacific and Southeast Asia. Part I: Diurnal variation. J. Meteor. Soc. Japan, 61 , 6077.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • NOAA/NESDIS/OSDPD/SSD, cited. 2008: IMS daily Northern Hemisphere snow and ice analysis at 4 km and 24 km resolution. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/g02156.html].

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., A. A. Munot, and D. R. Kothawale, 1995: Monthly and seasonal rainfall series for all-India homogeneous regions and meteorological subdivisions: 1871–1994. Research Rep. RR-065, Indian Institute of Tropical Meteorology, 113 pp.

    • Search Google Scholar
    • Export Citation
  • Patra, P. K., S. K. Behera, J. R. Herman, S. Maksyutov, H. Akimoto, and T. Yamagata, 2005: The Indian summer monsoon rainfall: Interplay of coupled dynamics, radiation, and cloud microphysics. Atmos. Chem. Phys., 5 , 21812188.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Coauthors, 2003: Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) Project. J. Geophys. Res., 108 , 8844. doi:10.1029/2002JD003301.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., X. Li, W. Meng, and E. Yegorova, 2007: Towards improved satellite estimates of short-wave radiative fluxes: Focus on cloud detection over snow. 2: Results. J. Geophys. Res., 112 , D09204. doi:10.1029/2005JD006699.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106 , (D22). 2837128398.

    • Search Google Scholar
    • Export Citation
  • Ramsay, B., 1998: The interactive multi-sensor snow and ice mapping system. Hydrol. Processes, 12 , 15371546.

  • Roca, R., and V. Ramanathan, 2000: Scale dependence of monsoonal convective systems over the Indian Ocean. J. Climate, 13 , 12861298.

  • Roca, R., S. Louvet, L. Picon, and M. Desbois, 2005: A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data. Meteor. Atmos. Phys., 90 , 4965.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., and L. C. Garder, 1993a: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6 , 23412369.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and L. C. Garder, 1993b: Validation of ISCCP cloud detections. J. Climate, 6 , 23702393.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6 , 23942418.

  • Rossow, W. B., A. W. Walker, D. E. Beuschel, and M. D. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/TD 737, World Meteorological Organization, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64 , 779784.

    • Search Google Scholar
    • Export Citation
  • Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66 , 14981505.

    • Search Google Scholar
    • Export Citation
  • Sen Roy, S., and R. C. Balling, 2007: Diurnal variations in summer season precipitation in India. Int. J. Climatol., 27 , 969976.

  • Shyamala, B., and C. V. V. Bhadram, 2006: Impact of mesoscale–synoptic scale interactions on the Mumbai historical rain event during 26–27 July 2005. Curr. Sci., 91 , 16491654.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15 , 9831001.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with Atmospheric Model Intercomparison Project. J. Climate, 9 , 27272750.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., P. A. Davis, and E. P. McClain, 1999: Scientific basis and initial evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advance Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16 , 656681.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., K. M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54 , 639655.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. M., A. K. Heidinger, and M. J. Pavalonis, 2004: Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J. Climate, 17 , 48054822.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wielicki, B. A., and L. Parker, 1992: On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophys. Res., 97 (12) 1279912823.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Yeh, T. C., and Y. X. Gao, 1979: The Meteorology of the Qinghai-Xizang (Tibet) Plateau. Science Press, 278 pp.

  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131 , 780798.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 657 204 11
PDF Downloads 563 103 11