Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua

Sean P. F. Casey Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Sean P. F. Casey in
Current site
Google Scholar
PubMed
Close
,
Andrew E. Dessler Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Andrew E. Dessler in
Current site
Google Scholar
PubMed
Close
, and
Courtney Schumacher Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Courtney Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many studies have commented on the presence of midtroposphere dry air layers in normally moist areas of the warm-pool region in the tropical western Pacific Ocean. In this study, 5 yr of relative humidity (RH) observations from the Atmospheric Infrared Sounder (AIRS) instrument aboard the Aqua satellite are analyzed to identify areas of anomalously dry air between 600 and 400 hPa over deep convective regions of the tropical oceans. A dry air layer is defined when midlevel RH is <20%, accounting for the lowest 10% of RH observations. Dry air layers appear to be more frequent over the Indian and Pacific Oceans than over the Atlantic Ocean. Large seasonal differences in the locations of dry air layers are apparent in each ocean basin. Large variations are also noted across the Pacific, suggesting limits on the applicability of case-study trends and observations of dry air layers to the Pacific as a whole. Back trajectories are then calculated for each observed parcel. The origin, or location of dehydration, is identified as the point along each trajectory at which the RH of the parcel is ≥100%. An analysis of the time between dehydration and dry air observation by AIRS suggests that dry air layers in June–August tend to last 1–2 days longer than those observed in other seasons. Although more dry air layers are observed to come from each hemisphere in its respective winter, most sources of dry air layers are subtropical and contribute anomalously dry air year-round. Other meteorological features are noted in the back trajectories, such as the eastward/westward wind transition from the subtropics to the tropics and the effects of the Indian monsoon on dry air distribution paths.

Corresponding author address: Sean P. F. Casey, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77840. Email: scasey@ariel.met.tamu.edu

Abstract

Many studies have commented on the presence of midtroposphere dry air layers in normally moist areas of the warm-pool region in the tropical western Pacific Ocean. In this study, 5 yr of relative humidity (RH) observations from the Atmospheric Infrared Sounder (AIRS) instrument aboard the Aqua satellite are analyzed to identify areas of anomalously dry air between 600 and 400 hPa over deep convective regions of the tropical oceans. A dry air layer is defined when midlevel RH is <20%, accounting for the lowest 10% of RH observations. Dry air layers appear to be more frequent over the Indian and Pacific Oceans than over the Atlantic Ocean. Large seasonal differences in the locations of dry air layers are apparent in each ocean basin. Large variations are also noted across the Pacific, suggesting limits on the applicability of case-study trends and observations of dry air layers to the Pacific as a whole. Back trajectories are then calculated for each observed parcel. The origin, or location of dehydration, is identified as the point along each trajectory at which the RH of the parcel is ≥100%. An analysis of the time between dehydration and dry air observation by AIRS suggests that dry air layers in June–August tend to last 1–2 days longer than those observed in other seasons. Although more dry air layers are observed to come from each hemisphere in its respective winter, most sources of dry air layers are subtropical and contribute anomalously dry air year-round. Other meteorological features are noted in the back trajectories, such as the eastward/westward wind transition from the subtropics to the tropics and the effects of the Indian monsoon on dry air distribution paths.

Corresponding author address: Sean P. F. Casey, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77840. Email: scasey@ariel.met.tamu.edu

Save
  • Bowman, K. P., 1993: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res., 98 , 2301323027.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54 , 27602774.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2000: Simulations of tropical upper tropospheric humidity. J. Geophys. Res., 105 , 2015520163.

  • Dessler, A. E., and K. Minschwaner, 2007: An analysis of the regulation of tropical tropospheric water vapor. J. Geophys. Res., 112 , D10120. doi:10.1029/2006JD007683.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., Ed. 2005: Validation of AIRS/AMSU/HSB core products, for data release version 4.0. JPL Rep. D-31448, 60 pp.

  • Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62 , 33533367.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53 , 18381855.

  • Johnson, R. H., T. Rickenbach, S. A. Rutledge, P. Ciesielski, and W. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation data set. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Parsons, D. B., K. Yoneyama, and J. L. Redelsperger, 2000: The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126 , 517548.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Redelsperger, J-L., D. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59 , 24382457.

    • Search Google Scholar
    • Export Citation
  • Ryoo, J. M., D. W. Waugh, and A. Gettleman, 2008: Variability of subtropical upper tropospheric humidity. Atmos. Chem. Phys., 8 , 26432655.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1992: Global circulation and tropical cloud activity. The Global Role of Tropical Rainfall, J. S. Theon et al., Eds., A. Deepak Publishing, 77–92.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and W. D. Braswell, 1997: How dry is the tropical free troposphere? Implications for global warming theory. Bull. Amer. Meteor. Soc., 78 , 10971106.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63 , 24622485.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2000: Climatology of intrusions into the tropical upper troposphere. Geophys. Res. Lett., 27 , 38573860.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and B. M. Funatsu, 2003: Intrusions into the tropical upper troposphere: Three-dimensional structure and accompanying ozone and OLR distributions. J. Atmos. Sci., 60 , 637653.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and D. B. Parsons, 1999: A proposed mechanism for the intrusion of dry air into the tropical western Pacific region. J. Atmos. Sci., 56 , 15241546.

    • Search Google Scholar
    • Export Citation
  • Zachariasse, M., H. G. J. Smit, P. F. J. van Velthoven, and H. Kelder, 2001: Cross-tropopause and interhemispheric transports into the tropical free troposphere over the Indian Ocean. J. Geophys. Res., 106 , 2844128452.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., B. E. Mapes, and B. J. Soden, 2003: Bimodality in tropical water vapour. Quart. J. Roy. Meteor. Soc., 129 , 28472866.

  • Zuidema, P., B. Mapes, J. Lin, C. Fairall, and G. Wick, 2006: The interaction of clouds and dry air in the eastern tropical Pacific. J. Climate, 19 , 45314544.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 55 4
PDF Downloads 106 36 1