• Auer, A. H., 1994: Hail recognition through the combined use of radar reflectivity and cloud-top temperatures. Mon. Wea. Rev., 122 , 22182221.

    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., G. W. Reuter, A. Bellon, and D. Hudak, 2004: A radar-based methodology for preparing a severe thunderstorm climatology in central Alberta. Atmos.–Ocean, 42 , 1322. doi:10.3137/ao.420102.

    • Search Google Scholar
    • Export Citation
  • Delobbe, L., and I. Holleman, 2006: Uncertainties in radar echo top heights used for hail detection. Meteor. Appl., 13 , 361374.

  • Delobbe, L., I. Holleman, D. Dehenauw, and J. Nem’eghaire, 2005: Verification of radar-based hail detection product. Preprints, WWRP Symp. on Nowcasting and Very Short Range Forecasting (WSN05), Toulouse, France, WWRP/WMO, P8.07.

    • Search Google Scholar
    • Export Citation
  • Dessens, J., 1986: Hail in southwestern France. I: Hailfall characteristics and hailstorm environment. J. Climate Appl. Meteor., 25 , 3547.

    • Search Google Scholar
    • Export Citation
  • Drebs, A., A. Nordlund, P. Karlsson, J. Helminen, and P. Rissanen, 2002: Tilastoja Suomen ilmastosta 1971-2000 (Climatological Statistics of Finland 1971-2000). Finnish Meteorological Institute, 96 pp.

    • Search Google Scholar
    • Export Citation
  • Etkin, D., and S. E. Brun, 1999: A note on Canada’s hail climatology: 1977 – 1993. Int. J. Climatol., 19 , 13571373.

  • Finland in Figures, cited. 2007: Statistics Finland. [Available online at http://www.stat.fi/tup/suoluk/suoluk_vaesto_en.html].

  • Giaiotti, D., S. Nordio, and F. Stel, 2003: The climatology of hail in the plain of Friuli Venezia Giulia. Atmos. Res., 67/68 , 247259.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed. 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Hamberg, H. E., 1917: Frequence de la Grele en Suede 1865-1917. Appendice aux Observations Suedoises, Vol. 59, Meteorologiska Centralanstalten, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Hohl, R., H-H. Schiesser, and D. Aller, 2002: Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings. Atmos. Res., 63 , 177207.

    • Search Google Scholar
    • Export Citation
  • Holleman, I., 2001: Hail detection using single-polarization radar. KNMI Scientific Rep. WR-2001-01, 77 pp. [Available from Royal Netherlands Meteorological Institute, P.O. Box 201, NL-3730, AE De Bilt, Netherlands].

    • Search Google Scholar
    • Export Citation
  • Holleman, I., H. R. A. Wessels, J. R. A. Onvlee, and S. J. M. Barlag, 2000: Development of a hail-detection-product. Phys. Chem. Earth, 25B , 12931297.

    • Search Google Scholar
    • Export Citation
  • Karsten, H., 1907: Ukonilmoista Suomessa 1903. Societas Scientiarum Fennica. Suomalaisen kirjallisuuden seuran kirjapaino, Helsinki. 148 pp.

    • Search Google Scholar
    • Export Citation
  • Koistinen, J., 2005: Tutka säätä tarkkailemassa. Kaisaniemestä Kumpulaan, H. Nevanlinna, Ed., Ilmatieteen laitos, 209–223.

  • Koistinen, J., T. Kuitunen, S. Pulkkinen, H. Hohti, and J. Kotro, 2008: Derivation of extreme event mesoscale area-intensity return periods of rainfall based on a large sample of radar data. Proc. Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, ERAD, 10.2. [Available online at http://erad2008.fmi.fi/proceedings].

    • Search Google Scholar
    • Export Citation
  • Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24 , 776790.

  • Leppäranta, M., and K. Myrberg, 2009: Physical Oceanography of the Baltic Sea. Springer Praxis, 84 pp.

  • Paul, A. H., 1980: Hailstorms in Southern Saskatchewan. J. Appl. Meteor., 19 , 305313.

  • Peura, M., 2002: Computer vision methods for anomaly removal. Proc. Second European Conf. on Radar Meteorology, Delft, Netherlands, Copernicus GmbH, 312–317.

    • Search Google Scholar
    • Export Citation
  • Punkka, A-J., and M. Bister, 2005: Occurrence of summertime convective precipitation and mesoscale convective systems in Finland during 2000-2001. Mon. Wea. Rev., 133 , 362373.

    • Search Google Scholar
    • Export Citation
  • Raoult, B., 2001: MARS on the Web: A virtual tour. ECMWF Newsletter, No. 90, ECMWF, Reading, United Kingdom, 9–17. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/90.pdf].

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. Giangrande, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Sanchez, J. L., R. Fraile, J. L. de la Madrid, M. T. de la Fuente, P. Rodriquez, and A. Castro, 1996: Crop damage: The hail size factor. J. Appl. Meteor., 35 , 15351541.

    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., and J. A. Day, 1998: A Field Guide to the Atmosphere. Peterson Field Guides, Houghton Mifflin, 384 pp.

  • Schuster, S. S., R. J. Blong, and M. S. Speer, 2005: A hail climatology of the Greater Sydney Area and New South Wales, Australia. Int. J. Climatol., 25 , 16331650.

    • Search Google Scholar
    • Export Citation
  • Schuster, S. S., R. J. Blong, and J. Aneney, 2006: Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia. Atmos. Res., 81 , 215235.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128 , 647677.

    • Search Google Scholar
    • Export Citation
  • Steiner, J. T., 1989: New Zealand hailstorms. N. Z. J. Geol. Geophys., 32 , 279291.

  • Strajnar, B., and M. Zagar, 2007: A radar-based hailstorm climatology for Slovenia. Fourth European Conf. on Severe Storms, ESSL, Trieste, Italy. [Available online at http://www.essl.org/ECSS/2007/abs/07-Climatology/1179325433.zagar-1-sec07.oral.pdf].

    • Search Google Scholar
    • Export Citation
  • Tuomi, T. J., 2004: Salamahavainnot 2004 (Lightning observations in Finland 2004). Geophysical Publication 58, Finnish Meteorological Institute, Helsinki, Finland, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Tuomi, T. J., and A. Mäkelä, 2007: Salamahavainnot 2007 (Lightning observations in Finland 2007). Rep. 2007:5, Finnish Meteorological Institute, Helsinki, Finland, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Tuomi, T. J., and A. Mäkelä, 2008: Thurnderstorm climate of Finland 1998-2007. Geophysica, 44 , (1–2). 6780.

  • Tuovinen, J-P., A-J. Punkka, J. Rauhala, H. Hohti, and D. Schultz, 2009: Climatology of severe hail in Finland: 1930–2006. Mon. Wea. Rev., 137 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Vinet, F., 2001: Climatology of hail in France. Atmos. Res., 56 , 309323.

  • Waldvogel, A., W. Schmid, and B. Federer, 1978: The kinetic energy of hailfalls. Part I: Hailstone spectra. J. Appl. Meteor., 17 , 515520.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18 , 15211525.

  • Webb, J. D. C., D. M. Elsom, and D. J. Reynolds, 2001: Climatology of severe hailstorms in Great Britain. Atmos. Res., 56 , 291308.

  • Webb, J. D. C., D. M. Elsom, and G. T. Meaden, 2008: Severe hailstorms in Great Britain and Ireland, a climatological survey and hazard assessment. Atmos. Res., 93 , 587606.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13 , 286303.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Zhang, and Y. Wand, 2008: Climatology of hail in China: 1961–2005. J. Appl. Meteor. Climatol., 47 , 795804.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 103 0
PDF Downloads 150 89 0

A Climatological Comparison of Radar and Ground Observations of Hail in Finland

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, Finland
Restricted access

Abstract

Two approaches to producing a hail climatology for Finland are compared. The first approach is based on 70 yr of hail reports from different sources (newspapers, storm spotters, and other volunteers). The second is derived primarily from radar data. It is shown that a selection of newspaper articles of hail damage covering a period of 70 yr provides a good overview of the typical monthly and diurnal distribution of hail occurrence over the country. Radar data covering five summers (2001–05) provide another data source, but with different potential sources of errors. The two distinct methods compared in this paper give roughly the same results in describing the hail climatology of Finland, which gives additional confidence in each of the methods. On the basis of both methods, most hailstones are observed in the afternoon, 1400–1600 local time. The hail “season” extends from May to early September with maximum occurrences in June, July, and August. This means that hail is most frequently observed when the convective energy available for storm growth is at its diurnal or seasonal peak. The length of the hail season is the same according to both radar and newspaper data. The main difference emerges in relation to July and August events: 37% of news about hail events is published in newspapers in late July but only 8% in early August, whereas for radar data the numbers are more evenly distributed, 33% and 18%, respectively. This can be partially explained by sociological factors—July is the main holiday month in Finland, when outdoor activities in more remote areas are more popular.

Corresponding author address: Elena Saltikoff, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. Email: elena.saltikoff@fmi.fi

Abstract

Two approaches to producing a hail climatology for Finland are compared. The first approach is based on 70 yr of hail reports from different sources (newspapers, storm spotters, and other volunteers). The second is derived primarily from radar data. It is shown that a selection of newspaper articles of hail damage covering a period of 70 yr provides a good overview of the typical monthly and diurnal distribution of hail occurrence over the country. Radar data covering five summers (2001–05) provide another data source, but with different potential sources of errors. The two distinct methods compared in this paper give roughly the same results in describing the hail climatology of Finland, which gives additional confidence in each of the methods. On the basis of both methods, most hailstones are observed in the afternoon, 1400–1600 local time. The hail “season” extends from May to early September with maximum occurrences in June, July, and August. This means that hail is most frequently observed when the convective energy available for storm growth is at its diurnal or seasonal peak. The length of the hail season is the same according to both radar and newspaper data. The main difference emerges in relation to July and August events: 37% of news about hail events is published in newspapers in late July but only 8% in early August, whereas for radar data the numbers are more evenly distributed, 33% and 18%, respectively. This can be partially explained by sociological factors—July is the main holiday month in Finland, when outdoor activities in more remote areas are more popular.

Corresponding author address: Elena Saltikoff, Finnish Meteorological Institute, P.O. Box 503, FIN-00101 Helsinki, Finland. Email: elena.saltikoff@fmi.fi

Save