• Beard, K. V., R. J. Kubesh, and H. T. Ochs, 1991: Laboratory measurements of small raindrop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci., 48 , 698710.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106 , 9951011.

  • Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112 , 22532269.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1993: Tornadic thunderstorm characteristics determined with Doppler radar. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 143–159.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123 , 31293143.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21 , 584598.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., R. M. Rasmussen, and J. Vivekanandan, 1986: Multiparameter radar measurements in Colorado convective storms. Part I: Graupel melting studies. J. Atmos. Sci., 43 , 25452563.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the mean winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20 , 533545.

  • Capsoni, C., M. D’Amico, and R. Nebuloni, 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18 , 17991809.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnic, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121 , 25112528.

    • Search Google Scholar
    • Export Citation
  • Dawson II, D. T., 2009: Impacts of single- and multi-moment microphysics on numerical simulations of supercells and tornadoes of the 3 May 1999 Oklahoma tornado outbreak. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 173 pp.

  • Dawson II, D. T., M. Xue, J. A. Milbrandt, M. K. Yau, and G. Zhang, 2007: Impact of multi-moment microphysics and model resolution on predicted cold pool and reflectivity intensity and structures in the Oklahoma tornadic supercell storms of 3 May 1999. Preprints, 22nd Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 10B.2. [Available online at http://ams.confex.com/ams/pdfpapers/124706.pdf].

    • Search Google Scholar
    • Export Citation
  • Dawson II, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multi-moment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Doviak, R., and D. Zrnic, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Search Google Scholar
    • Export Citation
  • Green, A. V., 1975: An approximation for shape of large raindrops. J. Appl. Meteor., 14 , 15781583.

  • Huang, G-J., V. N. Bringi, S. van den Heever, and W. Cotton, 2005: Polarimetirc radar signatures from RAMS microphysics. Preprints, 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.6. [Available online at http://ams.confex.com/ams/pdfpapers/96261.pdf].

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37 , 749775.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113 , 469489.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., 2008: State and parameter estimation using polarimetric radar data and an ensemble Kalman filter. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 209 pp.

  • Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136 , 22282245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136 , 22462260.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving thunderstorms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and M. L. Weisman, 1983: The dependence of convective precipitation patterns on vertical wind shear. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 44–49.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38 , 15581580.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Climate Appl. Meteor., 25 , 19561958.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47 , 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66 , 667685.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part I: Supercell storms. J. Appl. Meteor., 11 , 166179.

  • Meyers, M. P., R. L. Walko, J. R. Harrintong, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multi-moment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multi-moment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006: A multi-moment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63 , 31373159.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Climate Appl. Meteor., 25 , 10371051.

    • Search Google Scholar
    • Export Citation
  • Pfeifer, M., G. C. Craig, M. Hagan, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. J. Appl. Meteor. Climatol., 47 , 32023220.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., B. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. Klemp, 1981: The morphology of severe tornadic storms on 20 May 1977. J. Atmos. Sci., 38 , 16431663.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136 , 28492870.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109 , 171180.

  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18 , 315328.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37 , 125134.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44 , 557570.

  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnic, and M. Schonhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40 , 10191034.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30 , 10531063.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagen, and G. Zhang, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32 , 110.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST Project. Mon. Wea. Rev., 116 , 15211539.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0-jump of raindrop spectra. J. Atmos. Sci., 31 , 10671078.

  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. L. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Waterman, P. C., 1969: Scattering by dielectric obstacles. Alta Freq., 38 , (speciale). 348352.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Xue, M., 2000: High-order monotonic numerical diffusion and smoothing. Mon. Wea. Rev., 128 , 28532864.

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D-H. Wang, J-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23 , 4666.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Y. Jung, and G. Zhang, 2007: Error modeling of simulated reflectivity observations for ensemble Kalman filter data assimilation of convective storms. Geophys. Res. Lett., 34 , L10802. doi:10.1029/2007GL029945.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and G. Zhang, 2009: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data. Quart. J. Roy. Meteor. Soc., 135 , 14091423.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39 , 830841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 18
PDF Downloads 8 8 8

Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme

View More View Less
  • 1 School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

A new general polarimetric radar simulator for nonhydrostatic numerical weather prediction (NWP) models has been developed based on rigorous scattering calculations using the T-matrix method for reflectivity, differential reflectivity, specific differential phase, and copolar cross-correlation coefficient. A continuous melting process accounts for the entire spectrum of varying density and dielectric constants. This simulator is able to simulate polarimetric radar measurements at weather radar frequency bands and can take as input the prognostic variables of high-resolution NWP model simulations using one-, two-, and three-moment microphysics schemes. The simulator was applied at 10.7-cm wavelength to a model-simulated supercell storm using a double-moment (two moment) bulk microphysics scheme to examine its ability to simulate polarimetric signatures reported in observational studies. The simulated fields exhibited realistic polarimetric signatures that include ZDR and KDP columns, ZDR arc, midlevel ZDR and ρ rings, hail signature, and KDP foot in terms of their general location, shape, and strength. The authors compared the simulation with one employing a single-moment (SM) microphysics scheme and found that certain signatures, such as ZDR arc, midlevel ZDR, and ρ rings, cannot be reproduced with the latter. It is believed to be primarily caused by the limitation of the SM scheme in simulating the shift of the particle size distribution toward larger/smaller diameters, independent of mixing ratio. These results suggest that two- or higher-moment microphysics schemes should be used to adequately describe certain important microphysical processes. They also demonstrate the utility of a well-designed radar simulator for validating numerical models. In addition, the simulator can also serve as a training tool for forecasters to recognize polarimetric signatures that can be reproduced by advanced NWP models.

Corresponding author address: Youngsun Jung, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: youngsun.jung@ou.edu

Abstract

A new general polarimetric radar simulator for nonhydrostatic numerical weather prediction (NWP) models has been developed based on rigorous scattering calculations using the T-matrix method for reflectivity, differential reflectivity, specific differential phase, and copolar cross-correlation coefficient. A continuous melting process accounts for the entire spectrum of varying density and dielectric constants. This simulator is able to simulate polarimetric radar measurements at weather radar frequency bands and can take as input the prognostic variables of high-resolution NWP model simulations using one-, two-, and three-moment microphysics schemes. The simulator was applied at 10.7-cm wavelength to a model-simulated supercell storm using a double-moment (two moment) bulk microphysics scheme to examine its ability to simulate polarimetric signatures reported in observational studies. The simulated fields exhibited realistic polarimetric signatures that include ZDR and KDP columns, ZDR arc, midlevel ZDR and ρ rings, hail signature, and KDP foot in terms of their general location, shape, and strength. The authors compared the simulation with one employing a single-moment (SM) microphysics scheme and found that certain signatures, such as ZDR arc, midlevel ZDR, and ρ rings, cannot be reproduced with the latter. It is believed to be primarily caused by the limitation of the SM scheme in simulating the shift of the particle size distribution toward larger/smaller diameters, independent of mixing ratio. These results suggest that two- or higher-moment microphysics schemes should be used to adequately describe certain important microphysical processes. They also demonstrate the utility of a well-designed radar simulator for validating numerical models. In addition, the simulator can also serve as a training tool for forecasters to recognize polarimetric signatures that can be reproduced by advanced NWP models.

Corresponding author address: Youngsun Jung, Center for Analysis and Prediction of Storms, National Weather Center, Suite 2500, 120 David L. Boren Blvd., Norman, OK 73072. Email: youngsun.jung@ou.edu

Save