• Alados-Arboledas, L., and J. I. Jimenez, 1988: Day–night differences in the effective emissivity from clear skies. Bound.-Layer Meteor., 45 , 93101.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., and S. K. Cox, 1977: Procedures for improving pyrgeometer performance. J. Appl. Meteor., 16 , 188197.

  • Arnfield, A. J., and C. S. B. Grimmond, 1998: An urban canyon energy budget model and its application to urban storage heat flux modeling. Energy Build., 27 , 126.

    • Search Google Scholar
    • Export Citation
  • Bilbao, J., and A. H. de Miguel, 2007: Estimation of daylight downward longwave atmospheric irradiance under clear-sky and all-sky conditions. J. Appl. Meteor. Climatol., 46 , 878889.

    • Search Google Scholar
    • Export Citation
  • Božnar, M., 2002: Use of neural networks in the field of air pollution modeling. Air Pollution Modeling and Its Application XV, C. Borrego and G. Schayes, Eds., Kluwer Academic, 375–383.

    • Search Google Scholar
    • Export Citation
  • Božnar, M., and P. Mlakar, 1998: Improvement of air pollution forecasting models using feature determination and pattern selection strategies. Air Pollution Modeling and Its Application XII, S.-E. Gryning and N. Chaumerliac, Eds., Plenum Press, 725–726.

    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 58 , 389420.

  • Brutsaert, W., 1975: On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11 , 742744.

  • Burns, S. P., J. Sun, A. C. Delany, S. R. Semmer, S. P. Oncley, and T. W. Horst, 2003: A field intercomparison technique to improve the relative accuracy of longwave radiation measurements and an evaluation of CASES-99 pyrgeometer data quality. J. Atmos. Oceanic Technol., 20 , 348361.

    • Search Google Scholar
    • Export Citation
  • Codato, G., A. P. Oliveira, J. Soares, J. F. Escobedo, E. N. Gomes, and A. D. Pai, 2008: Global and diffuse solar irradiances in urban and rural areas in southeast of Brazil. Theor. Appl. Climatol., 93 , 5773.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and C. E. Duchon, 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38 , 474480.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., S. K. Gupta, and W. F. Staylor, 1983: Downward longwave radiation at the surface from satellite measurements. J. Climate Appl. Meteor., 22 , 19561960.

    • Search Google Scholar
    • Export Citation
  • Dilley, A. C., and D. M. O’Brien, 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124 , 13911401.

    • Search Google Scholar
    • Export Citation
  • Duarte, H. F., N. L. Dias, and S. R. Maggiotto, 2006: Assessing daytime downward longwave radiation estimates for clear and cloudy skies in southern Brazil. Agric. For. Meteor., 139 , 171181.

    • Search Google Scholar
    • Export Citation
  • Dürr, B., and R. Philipona, 2004: Automatic cloud amount detection by surface longwave downward radiation measurements. J. Geophys. Res., 109 , D05201. doi:10.1029/2003JD004182.

    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., 1993: An extended comparison between LOWTRAN7 computed and observed broadband thermal irradiances: Global extreme and intermediate surface conditions. J. Atmos. Oceanic Technol., 10 , 326336.

    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., J. Ellis, and S. Fels, 1991: Intercomparison of radiation codes used to climate models: Long wave results. J. Geophys. Res., 96 , 89298963.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., P. O. G. Persson, E. F. Bradley, R. E. Payne, and S. P. Anderson, 1998: A new look at calibration and use of Eppley precision infrared radiometers. Part I: Theory and application. J. Atmos. Oceanic Technol., 15 , 12291242.

    • Search Google Scholar
    • Export Citation
  • Finch, J. W., and M. J. Best, 2004: The accuracy of downward short- and long-wave radiation at the earth’s surface calculated using simple models. Meteor. Appl., 11 , 3339.

    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., W. Xaio, D. Marks, T. J. Sauer, and Q. Yu, 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45 , W03423. doi:10.1029/2008WR007394.

    • Search Google Scholar
    • Export Citation
  • Gardner, M. W., and S. R. Dorling, 1998: Artificial neural networks (the Multiplayer Perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ., 32 , 26272636.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 2001: Clear-sky longwave irradiance at the earth’s surface—Evaluation of climate models. J. Climate, 14 , 16471670.

    • Search Google Scholar
    • Export Citation
  • Gröbner, J., S. Wacker, L. Vuilleumier, and N. Kämpfer, 2009: Effective atmospheric boundary layer temperature from longwave radiation measurements. J. Geophys. Res., 114 , D19116. doi:10.1029/2009JD012274.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., W. L. Darnell, and A. C. Wilber, 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor., 31 , 13611367.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., A. C. Wilber, W. L. Darnell, and J. T. Suttles, 1993: Longwave surface radiation over the globe from satellite data: An error analysis. Int. J. Remote Sens., 14 , 95114.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse Jr., 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12 , 26912710.

    • Search Google Scholar
    • Export Citation
  • Iziomon, M. G., H. Mayer, and A. Matzarakis, 2003: Downward atmospheric longwave radiation under clear and cloudy skies: Measurement and parameterization. J. Atmos. Sol. Terr. Phys., 65 , 11071116.

    • Search Google Scholar
    • Export Citation
  • Ji, Q., and S-C. Tsay, 2000: On the dome effect of Eppley pyrgeometers and pyranometers. Geophys. Res. Lett., 27 , 971974.

  • Jonsson, P., I. Eliasson, B. Holmer, and C. S. B. Grimmond, 2006: Longwave incoming radiation in the tropics: Results from field work in three African cities. Theor. Appl. Climatol., 85 , 185201.

    • Search Google Scholar
    • Export Citation
  • Karam, H. A., A. J. Pereira-Filho, V. Mason, J. Niolhan, and E. P. Marques-Filho, 2009: Formulation of tropical town energy budget (t-TEB) scheme. Theor. Appl. Climatol., 100 , 110.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and D. D. Turner, 2008: A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J. Geophys. Res., 113 , D18206. doi:10.1029/2008JD009936.

    • Search Google Scholar
    • Export Citation
  • Lütkepohl, H., 1991: Introduction to Multiple Time Series Analysis. Springer Verlag, 545 pp.

  • Malek, E., 1997: Evaluation of effective atmospheric emissivity and parameterization of cloud at local scale. Atmos. Res., 45 , 4154.

  • Marciotto, E. R., 2008: Estudo da influência de um dossel urbano sobre o balanço de energia na superfície e implicações na estrutura vertical da camada limite atmosférica. Tese de Doutorado. Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP, Brasil, 120 pp. [Available online at http://www.iag.usp.br/meteo/labmicro/publicacoes/Teses&Dissertacoes/Marciotto_2008_Estudo_da_influencia_de_um_dossel_urbano_sobre_o_ balanco_de_energia_na_superficie_e_ implicacoes_na_estrutura_vertical_da_camada_limite_atmosferica.pdf].

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Marty, C., and Coauthors, 2003: Downward longwave irradiance uncertainty under Arctic atmospheres: Measurements and modeling. J. Geophys. Res., 108 , 4358. doi:10.1029/2002JD002937.

    • Search Google Scholar
    • Export Citation
  • Mlakar, P., and M. Božnar, 1997: Perceptron neural network-based model predicts air pollution. Proc. Intelligent Information Systems IIS’97, Grand Bahama Island, Bahamas, IEEE Computer Soc., 345–349.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , (D14). 1666316682.

    • Search Google Scholar
    • Export Citation
  • Nair, K. N., E. D. Freitas, O. R. Sánchez-Ccoyllo, M. A. F. Silva Dias, P. L. Silva Dias, M. F. Andrade, and O. Massambani, 2004: Dynamics of urban boundary layer over São Paulo associated with mesoscale processes. Meteor. Atmos. Phys., 86 , 8798.

    • Search Google Scholar
    • Export Citation
  • Niemelä, S., P. Räisänen, and H. Savijärvi, 2001: Comparison of surface radiative flux parameterizations Part I: Longwave radiation. Atmos. Res., 58 , 118.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42 , 11571173.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. P., E. J. Escobedo, and A. J. Machado, 2002a: A new shadow-ring device for measuring diffuse solar radiation at surface. J. Atmos. Oceanic Technol., 19 , 698708.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. P., E. J. Escobedo, A. J. Machado, and J. Soares, 2002b: Diurnal evolution of solar radiation at the surface in the City of São Paulo: Seasonal variation and modeling. Theor. Appl. Climatol., 71 , 231249.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. P., R. Bornstein, and J. Soares, 2003: Annual and diurnal wind patterns in the city of São Paulo. Water Air Soil Pollut. Focus, 3 , 315.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. P., J. Soares, M. Z. Božnar, P. Mlakar, and J. F. Escobedo, 2006: An application of neural technique to correct the dome temperature effects on pyrgeometer measurements. J. Atmos. Oceanic Technol., 23 , 8089.

    • Search Google Scholar
    • Export Citation
  • Payne, R. E., and S. P. Anderson, 1999: A new look at calibration and use of Eppley precision infrared radiometers. Part II: Calibration and use of the Woods Hole oceanographic institution improved meteorology precision infrared radiometer. J. Atmos. Oceanic Technol., 16 , 739751.

    • Search Google Scholar
    • Export Citation
  • Pérez, M., and L. Allados-Arboledas, 1999: Effects of natural ventilation and solar radiation on the performance of pyrgeometers. J. Atmos. Oceanic Technol., 16 , 174180.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., C. Fröhlich, and C. Betz, 1995: Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Appl. Opt., 34 , 15981605.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., and Coauthors, 2001: Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J. Geophys. Res., 106 , (D22). 2812928141.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., B. Dür, and C. Marty, 2004: Greenhouse effect and altitude gradients over the Alps—By surface longwave radiation measurements and model calculated LOR. Theor. Appl. Climatol., 77 , 17.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122 , 11271151.

    • Search Google Scholar
    • Export Citation
  • Snedecor, G. W., and W. G. Cochran, 1989: Statistical Methods. 8th ed. Iowa State University Press, 503 pp.

  • Soares, J., A. P. Oliveira, M. Z. Boznar, P. Mlakar, J. F. Escobedo, and A. J. Machado, 2004: Modeling hourly diffuse solar radiation in the city of São Paulo using neural network technique. Appl. Energy, 79 , 201214.

    • Search Google Scholar
    • Export Citation
  • Swinbank, W. C., 1963: Long-wave radiation from clear skies. Quart. J. Roy. Meteor. Soc., 89 , 339348.

  • Targino, A. C. L., and J. Soares, 2002: Modeling surface energy fluxes for Iperó, SP, Brazil: An approach using numerical inversion. Atmos. Res., 63 , 101121.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61 , 26572675.

    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., G. L. Smith, S. K. Gupta, and P. W. Stackhouse Jr., 2006: Annual cycles of surface shortwave radiative fluxes. J. Climate, 19 , 535547.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 648 pp.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2 , 184194.

  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63 , 13091313.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

Observational Characterization of the Downward Atmospheric Longwave Radiation at the Surface in the City of São Paulo

View More View Less
  • 1 Group of Micrometeorology, Department of Atmospheric Sciences, Institute of Astronomy, Geophysics, and Atmospheric Sciences, University of São Paulo, São Paulo, Brazil
  • | 2 MEIS d.o.o., Mali Vrh pri Šmarju, Slovenia
  • | 3 Department of Natural Resources, School of Agronomic Sciences, State University of São Paulo, Botucatu, Brazil
Restricted access

Abstract

This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m−2; January), and the minimum is observed during winter (332 ± 12 W m−2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m−2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m−2) at 0900 LT and a maximum (345 ± 12 W m−2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach.

Corresponding author address: Amauri Oliveira, Atmospheric Sciences Dept., IAG-USP, Rua do Matão 1226, São Paulo, SP 05508-090, Brazil. Email: apdolive@usp.br

Abstract

This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in São Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of São Paulo can be used as representative of the entire metropolitan region of São Paulo. The maximum monthly averaged value of the LW is observed during summer (389 ± 14 W m−2; January), and the minimum is observed during winter (332 ± 12 W m−2; July). The effective emissivity follows the LW and shows a maximum in summer (0.907 ± 0.032; January) and a minimum in winter (0.818 ± 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 ± 3.5 W m−2 and the atmospheric effective emissivity by about 0.088 ± 0.024. In August, the driest month of the year in São Paulo, the diurnal evolution of the LW shows a minimum (325 ± 11 W m−2) at 0900 LT and a maximum (345 ± 12 W m−2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 ± 0.027) during daytime and a maximum (0.842 ± 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% ± 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in São Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in São Paulo is to use an expression derived from a purely empirical approach.

Corresponding author address: Amauri Oliveira, Atmospheric Sciences Dept., IAG-USP, Rua do Matão 1226, São Paulo, SP 05508-090, Brazil. Email: apdolive@usp.br

Save