• Abarbanel, H. D. I., D. D. Holm, J. E. Marsden, and T. Ratiu, 1984: Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys. Rev. Lett., 52 , 23522355.

    • Search Google Scholar
    • Export Citation
  • Abarbanel, H. D. I., D. D. Holm, J. E. Marsden, and T. Ratiu, 1986: Nonlinear stability analysis of stratified fluid equilibria. Philos. Trans. Roy. Soc. London, A318 , 349409.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and M. R. Schoeberl, 1989: Breaking of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., and Y-H. Kim, 2008: Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux. J. Geophys. Res., 113 , D23107. doi:10.1029/2008JD009792.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., J-H. Jung, J-H. Oh, and J-W. Kim, 1996: Effects of mountain-induced gravity wave drag on atmospheric general circulation. J. Korean Meteor. Soc., 32 , 581591.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41 , 31223134.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., W. D. Hall, R. M. Kerr, D. Middleton, L. Radke, F. M. Ralph, P. J. Nieman, and D. Levinson, 2000: Origins of aircraft damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm. J. Atmos. Sci., 57 , 11051131.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., G. Meymaris, and M. Limber, 2004: An update on the FAA Aviation Weather Research Program’s in situ turbulence measurement and reporting system. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P4.3. [Available online at http://ams.confex.com/ams/11aram22sls/techprogram/paper_81622.htm].

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6 , 538547.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., M. A. Shapiro, Q. Jiang, and D. L. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62 , 31063126.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geophys. Publ., 22 , 123.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7 , 150165.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and J. A. Knox, 2010: Improvements to an operational clear-air turbulence diagnostic index by addition of a divergence trend term. Wea. Forecasting, 25 , 789798.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., P. F. Lester, and L. J. Ehernberger, 2003: Clear-air turbulence. Encyclopedia of the Atmospheric Sciences, J. R. Holton et al., Eds., Academic Press, 393–403.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., K. M. Bedka, J. A. Otkin, T. Greenward, and S. A. Ackerman, 2009: Understanding satellite-observed mountain-wave signatures using high-resolution numerical model data. Wea. Forecasting, 24 , 7686.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., R. D. Sharman, and S. B. Trier, 2007: A case study of convectively-induced clear-air turbulence. Preprints, 12th Conf. on Mesoscale Processes, Waterville Valley, NH, Amer. Meteor. Soc., 13.4. [Available online at http://ams.confex.com/ams/pdfpapers/126190.pdf].

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere. Elsevier, 456 pp.

  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38 , 14411481.

  • Holton, J. R., and M. J. Alexander, 1999: Gravity waves in the mesosphere generated by tropospheric convection. Tellus, 51B , 4558.

  • Hong, S-Y., and J-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 , 129151.

  • Hong, S-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134 , 23182341.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper by John Miles. J. Fluid Mech., 10 , 509512.

  • Jaeger, E. B., and M. Sprenger, 2007: A Northern Hemispheric climatology of indices for clear-air turbulence in the tropopause region derived from ERA-40 reanalysis data. J. Geophys. Res., 112 , D20106. doi:10.1029/2006JD008189.

    • Search Google Scholar
    • Export Citation
  • Jang, W., and H-Y. Chun, 2008: Severe downslope windstorms of Gangneung in the springtime. Atmosphere, 18 , 207224.

  • Jang, W., H-Y. Chun, and J-H. Kim, 2009: A study of forecast system for clear-air turbulence in Korea. Part I: Korean Integrated Turbulence Forecasting Algorithm (KITFA). Atmosphere, 19 , 255268.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., and J. D. Doyle, 2004: Gravity wave breaking over the central Alps: Role of complex terrain. J. Atmos. Sci., 61 , 22492266.

    • Search Google Scholar
    • Export Citation
  • Joseph, B., A. Mahalov, B. Nicolaenko, and K. L. Tse, 2004: Variability of turbulence and its outer scales in a model tropopause jet. J. Atmos. Sci., 61 , 621643.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43 , 170181.

  • Kaplan, M. L., A. W. Huffman, K. M. Lux, J. D. Cetola, J. J. Charney, A. J. Riordan, Y-L. Lin, and K. T. Waight III, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part II: Hydrostatic mesoscale numerical simulations of supergradient wind flow and streamwise ageostrophic frontogenesis. Meteor. Atmos. Phys., 88 , 129153.

    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., and Coauthors, 2006: Characterizing the severe turbulence environments associated with commercial aviation accidents. A real-time turbulence model (RTTM) designed for the operational prediction of hazardous aviation turbulence environments. Meteor. Atmos. Phys., 94 , 235270.

    • Search Google Scholar
    • Export Citation
  • Keller, J. L., 1990: Clear-air turbulence as a response to meso- and synoptic-scale dynamic processes. Mon. Wea. Rev., 118 , 22282242.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114 , 452499.

    • Search Google Scholar
    • Export Citation
  • Kim, J-H., and I-U. Chung, 2006: Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region. Atmosphere, 16 , 6783.

    • Search Google Scholar
    • Export Citation
  • Kim, J-H., and H-Y. Chun, 2008: Analysis on the spatial and temporal distribution of the aircraft turbulence occurred in South Korea for the recent 10 years. Preprints, 13th Conf. on Aviation, Range, and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., P3.3. [Available online at http://ams.confex.com/ams/88Annual/techprogram/paper_128033.htm].

    • Search Google Scholar
    • Export Citation
  • Kim, J-H., and H-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Kim, J-H., H-Y. Chun, W. Jang, and R. D. Sharman, 2009: A study of forecast system for clear-air turbulence in Korea. Part II: Graphical Turbulence Guidance (GTG) system. Atmosphere, 19 , 269287.

    • Search Google Scholar
    • Export Citation
  • Kim, S-Y., H-Y. Chun, and D. L. Wu, 2009: A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations. J. Geophys. Res., 114 , D22104. doi:10.1029/2009JD011971.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135 , 38083824.

  • Knox, J. A., 1997: Possible mechanism of clear-air turbulence in strongly anticyclonic flow. Mon. Wea. Rev., 125 , 12511259.

  • Knox, J. A., D. W. McCann, and P. D. Williams, 2008: Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65 , 32923304.

    • Search Google Scholar
    • Export Citation
  • Koch, P., H. Wernli, and H. W. Davies, 2006: An event-based jet-stream climatology and typology. Int. J. Climatol., 26 , 283301.

  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62 , 38853908.

  • Lane, T. P., and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett., 33 , L23813. doi:10.1029/2006GL027988.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47 , 27772796.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61 , 26922706.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. D. Sharman, M. A. Shapiro, and C. D. Watson, 2009: Statistics and dynamics of aircraft encounters of turbulence over Greenland. Mon. Wea. Rev., 137 , 26872702.

    • Search Google Scholar
    • Export Citation
  • Lee, Y-G., B-C. Choi, R. Sharman, G. Wiener, and H-W. Lee, 2003: Determination of the primary diagnostics for the CAT (clear-air turbulence) forecast in Korea. J. Korean Meteor. Soc., 39 , 677688.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35 , 5977.

  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93 , 1842.

  • Mancuso, R. L., and R. M. Endlich, 1966: Clear-air turbulence frequency as a function of wind shear and deformation. Mon. Wea. Rev., 94 , 581585.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1999: A simple turbulent kinetic energy equation and aircraft boundary layer turbulence. Natl. Wea. Dig., 23 , 1319.

  • McCann, D. W., 2001: Gravity waves, unbalanced flow, and aircraft clear-air turbulence. Natl. Wea. Dig., 25 , 314.

  • Miles, J. W., 1961: On the stability of heteorogeneous shear flows. J. Fluid Mech., 10 , 496508.

  • Miles, J. W., 1986: Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids, 29 , 34703471.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107 , 401427.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., and H. Ágústsson, 2009: Gravity wave breaking in easterly flow over Greenland and associated low level barrier- and reverse tip-jets. Meteor. Atmos. Phys., 104 , 191197.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., J. A. Whiteway, and G. Vaughan, 2001: Observations of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106 , 51735179.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and H. Teitelbaum, 2008: Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula. J. Geophys. Res., 113 , D16113. doi:10.1029/2007JD009739.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., P. K. Smolarkiewicz, and R. R. Garcia, 1996: Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci., 53 , 21862216.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., 1970: On the influence of synoptic development on the production of high level turbulence. Quart. J. Roy. Meteor. Soc., 96 , 413429.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., and K. Sato, 1999: Secondary generation of gravity waves associated with the breaking of mountain waves. J. Atmos. Sci., 56 , 38473858.

    • Search Google Scholar
    • Export Citation
  • Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecasting, 11 , 372384.

  • Sekioka, M., 1970: Application of Kelvin–Helmholtz instability to clear-air turbulence. J. Appl. Meteor., 9 , 896899.

  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37 , 9941004.

    • Search Google Scholar
    • Export Citation
  • Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21 , 268287.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, R. B., 1989: Hydrostatic air-flow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41.

  • Smith, R. B., S. Skubis, J. D. Doyle, A. S. Broad, C. Kiemle, and H. Volkert, 2002: Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59 , 20732092.

    • Search Google Scholar
    • Export Citation
  • Snively, J. B., and V. P. Pasko, 2003: Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett., 30 , 2254. doi:10.1029/2003GL018436.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On nongeostrophic baroclinic stability. J. Atmos. Sci., 23 , 390400.

  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convection system. Mon. Wea. Rev., 137 , 19721990.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67 , 29902999.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112 , 3154.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., and D. C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys., 130 , 399420.

    • Search Google Scholar
    • Export Citation
  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28 , 429476.

  • Zhou, X., J. R. Holton, and G. L. Mullendore, 2002: Forcing of secondary waves by breaking of gravity waves in the mesosphere. J. Geophys. Res., 107 , 4058. doi:10.1029/2001JD001204.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 8 8 8

A Numerical Study of Clear-Air Turbulence (CAT) Encounters over South Korea on 2 April 2007

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
Restricted access

Abstract

On 2 April 2007, nine cases of moderate-or-greater-level clear-air turbulence (CAT) were observed from pilot reports over South Korea during the 6.5 h from 0200 to 0830 UTC. Those CAT events occurred in three different regions of South Korea: the west coast, Jeju Island, and the eastern mountain areas. The characteristics and possible mechanisms of the CAT events in the different regions are investigated using the Weather Research and Forecasting model. The simulation consists of six nested domains focused on the Korean Peninsula, with the finest horizontal grid spacing of 0.37 km. The simulated wind and temperature fields in a 30-km coarse domain are in good agreement with those of the Regional Data Assimilation and Prediction System (RDAPS) analysis data of the Korean Meteorological Administration and observed soundings of operational radiosondes over South Korea. In synoptic features, an upper-level front associated with strong meridional temperature gradients is intensified, and the jet stream passing through the central part of the Korean Peninsula exceeds 70 m s−1. Location and timing of the observed CAT events are reproduced in the finest domains of the simulated results in three different regions. Generation mechanisms of the CAT events revealed in the model results are somewhat different in the three regions. In the west coast area, the tropopause is deeply folded down to about z = 4 km because of the strengthening of an upper-level front, and the maximized vertical wind shear below the jet core produces localized turbulence. In the Jeju Island area, localized mixing and turbulence are generated on the anticyclonic shear side of the enhanced jet, where inertial instability and ageostrophic flow are intensified in the lee side of the convective system. In the eastern mountain area, large-amplitude gravity waves induced by complex terrain propagate vertically and subsequently break down over the lee side of topography, causing localized turbulence. For most of the CAT processes considered, except for the mountain-wave breaking, standard NWP resolutions of tens of kilometers are adequate to capture the CAT events.

Corresponding author address: Prof. Hye-Yeong Chun, Dept. of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. Email: chunhy@yonsei.ac.kr

Abstract

On 2 April 2007, nine cases of moderate-or-greater-level clear-air turbulence (CAT) were observed from pilot reports over South Korea during the 6.5 h from 0200 to 0830 UTC. Those CAT events occurred in three different regions of South Korea: the west coast, Jeju Island, and the eastern mountain areas. The characteristics and possible mechanisms of the CAT events in the different regions are investigated using the Weather Research and Forecasting model. The simulation consists of six nested domains focused on the Korean Peninsula, with the finest horizontal grid spacing of 0.37 km. The simulated wind and temperature fields in a 30-km coarse domain are in good agreement with those of the Regional Data Assimilation and Prediction System (RDAPS) analysis data of the Korean Meteorological Administration and observed soundings of operational radiosondes over South Korea. In synoptic features, an upper-level front associated with strong meridional temperature gradients is intensified, and the jet stream passing through the central part of the Korean Peninsula exceeds 70 m s−1. Location and timing of the observed CAT events are reproduced in the finest domains of the simulated results in three different regions. Generation mechanisms of the CAT events revealed in the model results are somewhat different in the three regions. In the west coast area, the tropopause is deeply folded down to about z = 4 km because of the strengthening of an upper-level front, and the maximized vertical wind shear below the jet core produces localized turbulence. In the Jeju Island area, localized mixing and turbulence are generated on the anticyclonic shear side of the enhanced jet, where inertial instability and ageostrophic flow are intensified in the lee side of the convective system. In the eastern mountain area, large-amplitude gravity waves induced by complex terrain propagate vertically and subsequently break down over the lee side of topography, causing localized turbulence. For most of the CAT processes considered, except for the mountain-wave breaking, standard NWP resolutions of tens of kilometers are adequate to capture the CAT events.

Corresponding author address: Prof. Hye-Yeong Chun, Dept. of Atmospheric Sciences, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, South Korea. Email: chunhy@yonsei.ac.kr

Save