• Beighley, R. E., K. G. Eggert, T. Dunne, Y. He, V. Gummadi, and K. L. Verdin, 2009: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrol. Processes, 23 , 12211235.

    • Search Google Scholar
    • Export Citation
  • Chokngamwong, R., and L. S. Chiu, 2008: Thailand daily rainfall and comparison with TRMM products. J. Hydrometeor., 9 , 256266.

  • Collischonn, B., W. Collischonn, and C. E. M. Tucci, 2008: Daily hydrological modeling in the Amazon Basin using TRMM rainfall estimates. J. Hydrol., 360 , 207216.

    • Search Google Scholar
    • Export Citation
  • Conover, W. J., 1999: Practical Nonparametric Statistics. 3rd ed. John Wiley and Sons, 584 pp.

  • Crow, W. T., and J. D. Bolten, 2007: Estimating precipitation errors using spaceborne surface soil moisture retrievals. Geophys. Res. Lett., 34 , L08403. doi:10.1029/2007GL029450.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., T. W. Crawford, and S. A. Lecce, 2007a: A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood. Nat. Hazards, 43 , 187198.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., A. Salahuddin, R. F. Adler, G. J. Huffman, G. J. Gu, and Y. Hong, 2007b: Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J. Hydrometeor., 8 , 678689.

    • Search Google Scholar
    • Export Citation
  • Dai, A., X. Lin, and K. L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29 , 727744.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., P. Ceccato, E. Grover-Kopec, M. Lemma, S. J. Connor, and C. F. Ropelewski, 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28 , 15031526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., S. Chidzambwa, P. Ceccato, S. J. Connor, and C. F. Ropelewski, 2008: Validation of high-resolution satellite rainfall products over complex topography. Int. J. Remote Sens., 29 , 40974110.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., T. L. Mote, and J. M. Shepherd, 2009: The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Climate, 22 , 45904605.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1997: An Introduction to the Bootstrap. CRC Press, 436 pp.

  • Endreny, T. A., and N. Imbeah, 2009: Generating robust rainfall intensity-duration-frequency estimates with short-record satellite data. J. Hydrol., 371 , (1–4). 182191.

    • Search Google Scholar
    • Export Citation
  • Feidas, H., 2010: Validation of satellite rainfall products over Greece. Theor. Appl. Climatol., 99 , 193216.

  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states. J. Hydrometeor., 6 , 573598.

    • Search Google Scholar
    • Export Citation
  • Gu, G. J., 2009: Intraseasonal variability in the equatorial Atlantic–West Africa during March–June. Climate Dyn., 32 , 457471.

  • Habib, E., A. Henschke, and R. F. Adler, 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94 , 373388.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33 , L22402. doi:10.1029/2006GL028010.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. F. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007a: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43 , W08502. doi:10.1029/2006WR005739.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. F. Adler, A. Negri, and G. J. Huffman, 2007b: Flood and landslide applications of near real-time satellite products. Nat. Hazards, 43 , 285294.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Hyndman, R. J., and A. B. Koehler, 2006: Another look at measures of forecast accuracy. Int. J. Forecast., 22 , 679688.

  • Ichikawa, H., and T. Yasunari, 2008: Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Climate, 21 , 28522868.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. Y., and J. B. Halverson, 2008: On the differences in storm rainfall from Hurricanes Isidore and Lili. Part II: Water budget. Wea. Forecasting, 23 , 4461.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. Y., J. B. Halverson, and J. Simpson, 2008a: On the differences in storm rainfall from Hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting, 23 , 2943.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. Y., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008b: Hurricane “rainfall potential” derived from satellite observations aids overland rainfall prediction. J. Appl. Meteor. Climatol., 47 , 944959.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Juarez, R. I. N., W. H. Li, R. Fu, K. Fernandes, and A. D. Cardoso, 2009: Comparison of precipitation datasets over the tropical South American and African continents. J. Hydrometeor., 10 , 289299.

    • Search Google Scholar
    • Export Citation
  • Katsanos, D., K. Lagouvardos, V. Kotroni, and G. J. Huffman, 2004: Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. Geophys. Res. Lett., 31 , L06116. doi:10.1029/2003GL019142.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21 , 26802696.

  • Kirschbaum, D. B., R. Adler, Y. Hong, and A. Lerner-Lam, 2009: Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat. Hazards Earth Syst. Sci., 9 , 673686.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and R. M. Blackall, 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134 , (1–4). 1333.

    • Search Google Scholar
    • Export Citation
  • Koo, M. S., S. Y. Hong, and J. Kim, 2009: An evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data over South Korea. Asia-Pac. J. Atmos. Sci., 45 , 265282.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. J. Ciach, J. R. McCollum, and C. Bacotiou, 2000: Initial validation of the global precipitation climatology project monthly rainfall over the United States. J. Appl. Meteor., 39 , 10711087.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., T. Ushio, S. Shige, S. Kida, M. Kachi, and K. Okamoto, 2009: Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87 , 203222.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., Y. P. Zhou, and H-T. Wu, 2008: Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res., 113 , D23113. doi:10.1029/2008JD009963.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2009: Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia basin, Lake Victoria, Africa. Nat. Hazards, 50 , 109123.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31 , 20112017.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9 , 728743.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and R. C. J. Somerville, 2009: Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi-scale climate model. Geophys. Res. Lett., 36 , L05812. doi:10.1029/2008GL036964.

    • Search Google Scholar
    • Export Citation
  • Rahman, S., A. C. Bagtzoglou, F. Hossain, L. Tang, L. D. Yarbrough, and G. Easson, 2009a: Investigating spatial downscaling of satellite rainfall data for streamflow simulation in a medium-sized basin. J. Hydrometeor., 10 , 10631079.

    • Search Google Scholar
    • Export Citation
  • Rahman, S., D. Sengupta, and M. Ravichandran, 2009b: Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J. Geophys. Res., 114 , D17113. doi:10.1029/2008JD011694.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., and K. H. Cook, 2008: Abrupt rainfall transitions over the Greater Horn of Africa: Observations and regional model simulations. J. Geophys. Res., 113 , D15109. doi:10.1029/2007JD009202.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., and J. M. Mejia, 1974: The design of rainfall networks in time and space. Water Resour. Res., 10 , 713728.

  • Rudolf, B., and U. Schneider, 2004: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the International Precipitation Working Group, Monterey, CA, Italian National Research Council, 17 pp. [Available online at http://www.isac.cnr.it/~ipwg/meetings/monterey/pdf/Rudolf.pdf].

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10 , 149166.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34 , L23810. doi:10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., S. Cocke, and T. E. LaRow, 2007: Diurnal cycle of precipitation in a climate model. J. Geophys. Res., 112 , D13109. doi:10.1029/2006JD008333.

    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Tribbia, J. Rakovec, and B. Brown, 2009: Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean. Mon. Wea. Rev., 137 , 31963218.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., J. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Su, F., Y. Hong, and D. P. Lettenmaier, 2008: Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeor., 9 , 622640.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2009: Monitoring the water balance of Lake Victoria, East Africa, from space. J. Hydrol., 370 , (1–4). 163176.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34 , L14403. doi:10.1029/2007GL030787.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, B. J. Choudhury, and M. Garcia, 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8 , 11651183.

    • Search Google Scholar
    • Export Citation
  • Tobin, K. J., and M. E. Bennett, 2009: Using SWAT to model streamflow in two river basins with ground and satellite precipitation data. J. Amer. Water Resour. Assoc., 45 , 253271.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and S. D. Miller, 2005: Towards improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Search Google Scholar
    • Export Citation
  • Valeriano, O. C. S., T. Koike, D. W. Yang, C. T. Nyunt, V. K. Duong, and L. C. Nguyen, 2009: Flood simulation using different sources of rainfall in the Huong River, Vietnam. Hydrol. Sci. J., 54 , 909917.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., L. G. G. De Goncalves, D. L. Toll, and J. R. Rozante, 2009: Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeor., 10 , 533543.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2007: Evaluation of the research-version TMPA three-hourly 0.25° × 0.25° rainfall estimates over Oklahoma. Geophys. Res. Lett., 34 , L05402. doi:10.1029/2006GL029147.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and W. F. Krajewski, 2008: Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour., 31 , 10151023.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113 , D11102. doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., W. F. Krajewski, and J. A. Smith, 2009: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma. J. Geophys. Res., 114 , D12106. doi:10.1029/2008JD011475.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. Elsevier, 627 pp.

  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34 , 11431160.

    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8 , 607626.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., H. Yu, P. Chen, C. Qian, and C. Yue, 2009: Verification of tropical cyclone-related satellite precipitation estimates in mainland China. J. Appl. Meteor. Climatol., 48 , 22272241.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., R. C. Yu, H. M. Chen, A. G. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21 , 39974010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 48 1
PDF Downloads 20 9 1

Evaluation of the Research-Version TMPA Rainfall Estimate at Its Finest Spatial and Temporal Scales over the Rome Metropolitan Area

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
Restricted access

Abstract

The focus of this study is the evaluation of the research-version Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall product at its finest spatial and temporal resolutions (3-hourly and 0.25° × 0.25°) over the Rome, Italy, metropolitan area during the period from October 2008 to January 2009. Accurate ground reference rainfall estimates for two satellite pixels are obtained from a dense rain gauge network (22 rain gauges in one pixel and 16 in the other one). The evaluation is based on examination of time series, scatterplots, and survival functions, as well as measures of agreement and disagreement. The results of this study point to the importance of using the TRMM satellite for rainfall estimation. Suggestions in terms of minimum number of rain gauges required to estimate ground reference rainfall are also provided.

Corresponding author address: Gabriele Villarini, Dept. of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ 08540. Email: gvillari@princeton.edu

Abstract

The focus of this study is the evaluation of the research-version Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall product at its finest spatial and temporal resolutions (3-hourly and 0.25° × 0.25°) over the Rome, Italy, metropolitan area during the period from October 2008 to January 2009. Accurate ground reference rainfall estimates for two satellite pixels are obtained from a dense rain gauge network (22 rain gauges in one pixel and 16 in the other one). The evaluation is based on examination of time series, scatterplots, and survival functions, as well as measures of agreement and disagreement. The results of this study point to the importance of using the TRMM satellite for rainfall estimation. Suggestions in terms of minimum number of rain gauges required to estimate ground reference rainfall are also provided.

Corresponding author address: Gabriele Villarini, Dept. of Civil and Environmental Engineering, Princeton University, Engineering Quadrangle, Princeton, NJ 08540. Email: gvillari@princeton.edu

Save