• Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., V. Tovinkere, J. Titlow, and R. M. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36 , 15191540.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., D. P. Kratz, P. Yang, S. Ou, Y. Hu, P. F. Soulen, and S-C. Tsay, 2000a: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models. J. Geophys. Res., 105 , (D9). 1176711780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000b: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase. J. Geophys. Res., 105 , (D5). 1178111792.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. Mackenzie Jr., K. M. Bedka, and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113 , D20207. doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. A. Petersen, and D. J. Cecil, 2005: The tropical convective spectrum. Part I: Archetypal vertical structures. J. Climate, 18 , 27442769.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., 1987: A pattern recognition technique for distinguishing surface and cloud types in the polar regions. J. Appl. Meteor., 26 , 14121427.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2007: MSG level 1.5 image data format description. EUMETSAT Publ. EUM/MSG/ICD/105, 122 pp. [Available from EUMETSAT, Am Kavalleriesand 31, D-64295 Darmstadt, Germany].

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and S. A. Christopher, 2000: The GOES IM imagers: New tools for studying microphysical properties of boundary layer stratiform clouds. Bull. Amer. Meteor. Soc., 81 , 26072619.

    • Search Google Scholar
    • Export Citation
  • Guillou, Y., 2008: Algorithm theoretical basis document for rapid development thunderstorms. RDT-PGE11 version 2.0, Météo-France, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., 1986: Satellite and surface observations of strong wind zones accompanying thunderstorms. Precipitation and Convection, Vol. 2, Satellite Imagery Interpretation for Forecasters, Meteor. Monogr., National Weather Association, 4-L-1–4-L-8.

    • Search Google Scholar
    • Export Citation
  • Han, L., Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking and forecasting–An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26 , 719732.

    • Search Google Scholar
    • Export Citation
  • Harris, R. J., J. R. Mecikalski, W. M. MacKenzie Jr., P. A. Durkee, and K. E. Nielsen, 2010: The definition of GOES infrared lightning initiation interest fields. J. Appl. Meteor. Climatol., 49 , 25272543.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., R. Frey, and M. J. Pavolonis, 2004: Relative merits of the 1.6 and 3.75 micron channels of the AVHRR/3 for cloud detection. Can. J. Remote Sens., 30 , 182194.

    • Search Google Scholar
    • Export Citation
  • Hunt, G. E., 1973: Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. Quart. J. Roy. Meteor. Soc., 99 , 346369.

    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., J. K. Roskovensky, J. M. Jackson, A. K. Heidinger, T. J. Kopp, M. J. Pavolonis, and R. Frey, 2005: Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens., 26 , 46814706.

    • Search Google Scholar
    • Export Citation
  • Isaacs, R., and J. Barnes, 1987: Intercomparison of cloud imagery from the DMSP OLS, NOAA AVHRR, GOES VISSR, and Landsat MSS. J. Atmos. Oceanic Technol., 4 , 647667.

    • Search Google Scholar
    • Export Citation
  • Iskenderian, H., J. R. Mecikalski, W. M. MacKenzie Jr., W. F. Feltz, and K. M. Bedka, 2009: Using satellite data to improve convective forecasts in the Collaborative Storm Prediction for Aviation (CoSPA). Proc. First Atmospheric and Space Environments Conf., San Antonio, TX, AIAA.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. A., and D. W. Wichern, 2002: Applied Multivariate Statistical Analysis. 5th ed. Prentice Hall, 730 pp.

  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8 , 67396753.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53 , 361369.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. Zhang, and D-L. Zhang, 2006: Thermodynamic, cloud microphysics, and rainfall responses to initial moisture perturbations in the tropical deep convective regime. J. Geophys. Res., 111 , D14207. doi:10.1029/2005JD006968.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek, 2006: GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Wea. Rev., 134 , 23422353.

    • Search Google Scholar
    • Export Citation
  • Marr, D., and E. Hildreth, 1980: Theory of edge detection. Proc. Roy. Meteor. Soc., 207B , 215217.

  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134 , 4978.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., W. M. MacKenzie Jr., M. König, and S. Muller, 2010: Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields. J. Appl. Meteor. Climatol., 49 , 521534.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104 , 14741483.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18 , 562584.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113 , D04208. doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introduction to the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, J. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47 , 26962711.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1986: Cloud Investigation by Satellite. Ellis Horwood, 314 pp.

  • Setvák, M., and C. A. Doswell III, 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119 , 841847.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., R. M. Rabin, C. A. Doswell, and V. Levizzani, 2003: Satellite observations of convective storm top features in the 1.6 and 3.7/3.9 μm spectral bands. Atmos. Res., 67–68C , 589605.

    • Search Google Scholar
    • Export Citation
  • Siewert, C. W., M. König, and J. R. Mecikalski, 2010: Application of Meteosat Second Generation data towards improving the nowcasting of convective initiation. Meteor. Appl., 17 , 442451.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134 , 522.

  • Weiss, C. E., and J. F. W. Purdom, 1974: The effect of early-morning cloudiness on squall-line activity. Mon. Wea. Rev., 102 , 400402.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25 , 261276.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wilson, J. W., E. E. Ebert, T. R. Saxen, R. D. Roberts, C. K. Mueller, M. Sleigh, C. E. Pierce, and A. Seed, 2004: Sydney 2000 Forecast Demonstration Project: Convective storm nowcasting. Wea. Forecasting, 19 , 131150.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., and D. A. Clark, 2006: Advanced aviation weather forecasts. MIT Lincoln Lab. J., 16 , 3158.

  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study. Bull. Amer. Meteor. Soc., 89 , 14771486.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101 , 191210. doi:10.1007/s00703-008-0290-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 6 6 6

Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance

View More View Less
  • 1 Earth Systems Science Center, University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
  • | 3 Jupiter’s Call, LLC, Madison, Alabama
Restricted access

Abstract

This study is a companion research effort to “,” which emphasized use of infrared data for understanding various aspects of growing convective clouds in the Meteosat Second Generation (MSG) satellite’s Spinning Enhanced Visible and Infrared Imager (SEVIRI) imagery. Reflectance and derived brightness variability (BV) fields from MSG SEVIRI are used here to understand relationships between cloud-top signatures and physical processes for growing cumulus clouds prior to known convective initiation (CI) events, or the first occurrence of a ≥35-dBZ echo from a new convective cloud. This study uses daytime SEVIRI visible (VIS) and near-infrared (NIR) reflectances from 0.6 to 3.9 μm (3-km sampling distance), as well as high-resolution visible (1-km sampling distance) fields. Data from 123 CI events observed during the 2007 Convection and Orographically Induced Precipitation Study (COPS) field experiment conducted over southern Germany and northeastern France are processed, per convective cell, so to meet this study’s objectives. These data are those used in . A total of 27 VIS–NIR and BV “interest fields” are initially assessed for growing cumulus clouds, with correlation and principal component analyses used to highlight the fields that contain the most unique information for describing principally cloud-top glaciation, as well as the presence of vigorous updrafts. Time changes in 1.6- and 3.9-μm reflectances, as well as BV in advance of CI, are shown to contain the most unique information related to the formation and increase in size of ice hydrometeors. Several methods are proposed on how results from this analysis may be used to monitor growing convective clouds per MSG pixel or per cumulus cloud “object” over 1-h time frames.

Corresponding author address: John R. Mecikalski, Dept. of Atmospheric Science, University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Abstract

This study is a companion research effort to “,” which emphasized use of infrared data for understanding various aspects of growing convective clouds in the Meteosat Second Generation (MSG) satellite’s Spinning Enhanced Visible and Infrared Imager (SEVIRI) imagery. Reflectance and derived brightness variability (BV) fields from MSG SEVIRI are used here to understand relationships between cloud-top signatures and physical processes for growing cumulus clouds prior to known convective initiation (CI) events, or the first occurrence of a ≥35-dBZ echo from a new convective cloud. This study uses daytime SEVIRI visible (VIS) and near-infrared (NIR) reflectances from 0.6 to 3.9 μm (3-km sampling distance), as well as high-resolution visible (1-km sampling distance) fields. Data from 123 CI events observed during the 2007 Convection and Orographically Induced Precipitation Study (COPS) field experiment conducted over southern Germany and northeastern France are processed, per convective cell, so to meet this study’s objectives. These data are those used in . A total of 27 VIS–NIR and BV “interest fields” are initially assessed for growing cumulus clouds, with correlation and principal component analyses used to highlight the fields that contain the most unique information for describing principally cloud-top glaciation, as well as the presence of vigorous updrafts. Time changes in 1.6- and 3.9-μm reflectances, as well as BV in advance of CI, are shown to contain the most unique information related to the formation and increase in size of ice hydrometeors. Several methods are proposed on how results from this analysis may be used to monitor growing convective clouds per MSG pixel or per cumulus cloud “object” over 1-h time frames.

Corresponding author address: John R. Mecikalski, Dept. of Atmospheric Science, University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Save