• Berthier, S., P. Chazette, J. Pelon, and B. Baum, 2008: Comparison of cloud statistics from spaceborne lidar systems. Atmos. Chem. Phys. Discuss., 8 , 52695304.

    • Search Google Scholar
    • Export Citation
  • Buriez, J., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens., 18 , 27852813.

  • Cahalan, R. F., M. J. McGill, J. Kolasinski, T. Várnai, and K. Yetzer, 2005: THOR—Cloud Thickness from Offbeam Lidar Returns. J. Atmos. Oceanic Technol., 22 , 605627.

    • Search Google Scholar
    • Export Citation
  • C.-Labonnote, L., G. Brogniez, M. Doutriaux-Boucher, and J. Buriez, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27 , 113116.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., G. G. Mace, and T. P. Ackerman, 1998: An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Oceanic Technol., 15 , 10351042.

    • Search Google Scholar
    • Export Citation
  • Cornet, C., L. C.-Labonnote, and F. Szczap, 2010: Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. J. Quant. Spectrosc. Radiat. Transf., 111 , 174186.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., 2006: Effective propagation kernels in structured media with broad spatial correlations—Illustration with large-scale transport of solar photons through cloudy atmospheres. Computational Methods in Transport—Granlibakken 2004, F. Graziani, Ed., Lecture Notes in Computational Science and Engineering, Vol. 48, Springer, 84–140.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., 2008: Multiple-scattering lidar from both sides of the clouds: Addressing internal structure. J. Geophys. Res., 113 , D14S10. doi:10.1029/2007JD009666.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and A. Marshak, 1997: Lévy kinetics in slab geometry: Scaling of transmission probability. Fractal Frontiers, M. M. Novak and T. G. Dewey, Eds., World Scientific, 63–72.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and A. Marshak, 2002: Space–time characteristics of light transmitted through dense clouds: A Green’s function analysis. J. Atmos. Sci., 59 , 27132727.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., R. F. Cahalan, J. D. Spinhirne, M. J. McGill, and S. P. Love, 1999: Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth, B24 , 177185. Erratum, B24, 757–765.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., I. N. Polonsky, and A. Marshak, 2009: Space–time Green functions for diffusive radiation transport. Application to Active and Passive Cloud Probing, A. A. Kokhanovsky, Ed., Light Scattering Reviews, Vol. 4, Spring-Verlag, 169–292.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 290 pp.

  • Deschamps, P., F. Bréon, M. Leroy, A. Podaire, A. Bricaud, J. Buriez, and G. Sèze, 1994: The POLDER mission: Instruments characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32 , 598615.

    • Search Google Scholar
    • Export Citation
  • Dianov-Klokov, V. I., and L. D. Krasnokutskaya, 1972: Comparison of observed and calculated effective photon path length in clouds. Atmos. Ocean. Phys., 8 , 487492.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 1998: Practical model for the calculation of multiply scattered lidar returns. Appl. Opt., 37 , 24642472.

  • Fisher, J., and H. Grassl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study. J. Appl. Meteor., 30 , 12451259.

    • Search Google Scholar
    • Export Citation
  • Fisher, J., W. Cordes, A. Schmitz-Peiffer, W. Renger, and P. Mörl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: measurements. J. Appl. Meteor., 30 , 12601267.

    • Search Google Scholar
    • Export Citation
  • Flesia, C., and P. Schwendimann, Eds. 1995: Special section on Multiple Scattering in Lidar Experiments (MUSCLE). Appl. Phys., 60B , 315362.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., J. L. Deuze, M. Herman, and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens., 32 , 7888.

    • Search Google Scholar
    • Export Citation
  • Hasler, A. F., J. Strong, R. H. Woodward, and H. Pierce, 1991: Automatic analysis of stereoscopic image pairs for determination of cloud-top height and structure. J. Appl. Meteor., 30 , 257281.

    • Search Google Scholar
    • Export Citation
  • Hayasaka, T., T. Nakajima, Y. Fujiyoshi, Y. Ishizaka, T. Takeda, and M. Tanaka, 1995: Geometrical thickness, liquid water content, and radiative properties of stratocumulus clouds over the western North Pacific. J. Appl. Meteor., 34 , 460470.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and G. L. Stephens, 2000: Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the O2 A band. J. Atmos. Sci., 57 , 16151634.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and G. L. Stephens, 2002: Molecular line absorption in a scattering atmosphere. Part III: Pathlength characteristics and effects of spatially heterogeneous clouds. J. Atmos. Sci., 59 , 16411654.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Battaglia, 2008: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65 , 36363651.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113 , D00A19. doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30 , 227.

    • Search Google Scholar
    • Export Citation
  • Knibbe, W. J. J., J. F. de Haan, J. W. Hovenier, D. M. Stam, R. B. A. Koelemeijer, and P. Stammes, 2000: Deriving terrestrial cloud top pressure from photopolarimetry of reflected light. J. Quant. Spectrosc. Radiat. Transf., 64 , 173199.

    • Search Google Scholar
    • Export Citation
  • Koelemeijer, R. B. A., and P. Stammes, 1999: Effects of clouds on ozone column retrieval from GOME UV measurements. J. Geophys. Res., 104 , 82818294.

    • Search Google Scholar
    • Export Citation
  • Koelemeijer, R. B. A., P. Stammes, J. W. Hovenier, and J. F. de Haan, 2002: Global distributions of effective cloud fraction and cloud top pressure derived from oxygen A band spectra measured by the global ozone monitoring experiment: Comparison to ISCCP data. J. Geophys. Res., 107 , 4151. doi:10.1029/2001JD000840.

    • Search Google Scholar
    • Export Citation
  • Kuji, M., and T. Nakajima, 2002: Retrieval of cloud geometrical parameters using remote sensing data. Preprints, 11th Conf. on Atmospheric Radiation/11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., JP1.7. [Available online at http://ams.confex.com/ams/pdfpapers/39550.pdf].

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmosphere. J. Geophys. Res., 96 , 90279063.

    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., R. Preusker, T. Ruhtz, B. Heese, M. Wiegner, C. Lindemann, and J. Fisher, 2006: Validation of MERIS cloud-top pressure using airborne lidar measurements. J. Appl. Meteor. Climatol., 45 , 16121621.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., A. Kylling, S. Madronich, and G. Seckmeyer, 1998: Enhanced absorption of UV radiation due to multiple scattering in clouds: Experimental evidence and theoretical explanation. J. Geophys. Res., 103 , 3124131254.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47 , 11751198.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and G. L. Stephens, 1999: Multiple scattering effects in the lidar pulse stretching problem. J. Geophys. Res., 104 , 2220522219.

    • Search Google Scholar
    • Export Citation
  • Min, Q. L., and L. C. Harrison, 1999: Joint statistics of photon path length and cloud optical depth. Geophys. Res. Lett., 26 , 14251428.

    • Search Google Scholar
    • Export Citation
  • Min, Q. L., and E. E. Clothiaux, 2003: Photon path length distributions inferred from rotating shadowband spectroradiometer measurements at the Atmospheric Radiation Measurement Program Southern Great Plains site. J. Geophys. Res., 108 , 4465. doi:10.1029/2002JD002963.

    • Search Google Scholar
    • Export Citation
  • Min, Q. L., L. C. Harrison, and E. E. Clothiaux, 2001: Joint statistics of photon path length and cloud optical depth: Case studies. J. Geophys. Res., 106 , 73757385.

    • Search Google Scholar
    • Export Citation
  • Min, Q. L., L. C. Harrison, P. Kiedron, J. Berndt, and E. Joseph, 2004: A high-resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res., 109 , D02202. doi:10.1029/2003JD003540.

    • Search Google Scholar
    • Export Citation
  • Moroney, C., R. Davies, and J-P. Muller, 2002: Operational retrieval of cloud-top heights using MISR data. IEEE Trans. Geosci. Remote Sens., 40 , 15321546.

    • Search Google Scholar
    • Export Citation
  • O’Brien, D. M., and R. M. Mitchell, 1992: Error estimates for retrieval of cloud top pressure using absorption in the A band of oxygen. J. Appl. Meteor., 31 , 11791192.

    • Search Google Scholar
    • Export Citation
  • Pfeilsticker, K., 1999: First geometrical path length probability density function derivation of the skylight from high-resolution oxygen A-band spectroscopy 2. Derivation of the Lévy index for the skylight transmitted by midlatitude clouds. J. Geophys. Res., 104 , 41014116.

    • Search Google Scholar
    • Export Citation
  • Pfeilsticker, K., F. Erie, O. Funk, H. Veitel, and U. Platt, 1998: First geometrical pathlengths probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations 1. Measurement technique, atmospheric observations and model calculations. J. Geophys. Res., 103 , 1148311504.

    • Search Google Scholar
    • Export Citation
  • Polonsky, I. N., S. P. Love, and A. B. Davis, 2005: Wide-angle imaging lidar deployment at the ARM Southern Great Plains site: Intercomparison of cloud property retrievals. J. Atmos. Oceanic Technol., 22 , 628648.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, R. W. Sanders, and J. S. Daniel, 2001: Cloud modulation of zenith sky oxygen photon path lengths over Boulder, Colorado: Measurement versus model. J. Geophys. Res., 106 , 11391155.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., and P. J. Turner, 1997: Cloud-top height determination using ATSR data. Remote Sens. Environ., 59 , 113.

  • Preusker, R., J. Fisher, P. Albert, R. Bennartz, and L. Schüller, 2007: Cloud-top pressure retrieval using the oxygen A-band in the IRS-3 MOS instrument. Int. J. Remote Sens., 28 , 19571967.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rozanov, V. V., and A. A. Kokhanovsky, 2004: Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top-of-atmosphere reflectance measurements in the oxygen A band. J. Geophys. Res., 109 , D05202. doi:10.1029/2003JD004104.

    • Search Google Scholar
    • Export Citation
  • Saiedy, F., D. T. Hilleary, and W. A. Morgan, 1965: Cloud-top altitude measurements from satellites. Appl. Opt., 4 , 495500.

  • Scholl, T., and Coauthors, 2006: Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories. J. Geophys. Res., 111 , D12211. doi:10.1029/2004JD005707.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., and R. A. Frey, 1990: On cloud altitude determinations from High Resolution Interferometer Sounder (HIS) observations. J. Appl. Meteor., 29 , 658662.

    • Search Google Scholar
    • Export Citation
  • Sneep, M., J. F. de Haan, P. Stammes, P. Wang, C. Vanbauce, A. P. Vasilkov, and P. F. Levelt, 2008: Three-way comparison between OMI and PARASOL cloud pressure products. J. Geophys. Res., 113 , D15S23. doi:10.1029/2007JD008694.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and A. K. Heidinger, 2000: Molecular line absorption in a scattering atmosphere. Part I: Theory. J. Atmos. Sci., 57 , 15991614.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., J. Buriez, F. Parol, B. Bonnel, G. Seze, and P. Couvert, 1998: Apparent pressure derived from ADEOS-POLDER observations in the oxygen A-band over ocean. Geophys. Res. Lett., 25 , 31593162.

    • Search Google Scholar
    • Export Citation
  • Vanbauce, C., B. Cadet, and R. Marchand, 2003: Comparison of polder apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures. Geophys. Res. Lett., 30 , 1212. doi:10.1029/2002GL016449.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1980: Tables, Formulas and Applications. Vol. 2, Multiple Light Scattering, Academic Press, 739 pp.

  • Wind, G., S. Platnick, M. D. King, P. A. Hubanks, M. J. Pavolonis, A. K. Heidinger, P. Yang, and B. A. Baum, 2010: Multilayer cloud detection with the MODIS near-infrared water vapor absorption band. J. Appl. Meteor. Climatol., 49 , 23152333.

    • Search Google Scholar
    • Export Citation
  • Wu, M. L., 1985: Remote sensing of cloud-top pressure using reflected solar radiation in the oxygen A-band. J. Appl. Meteor., 24 , 539546.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., and D. Q. Wark, 1961: Discussion of the letter by R. A. Hanel, “Determination of cloud altitude from a satellite”. J. Geophys. Res., 66 , 3596.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 4 4 4

Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL

View More View Less
  • 1 Laboratoire d’Optique Atmosphérique, Université Lille 1, Sciences et Technologies, Villeneuve d’Ascq, France
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 Laboratoire d’Optique Atmosphérique, Université Lille 1, Sciences et Technologies, Villeneuve d’Ascq, France
Restricted access

Abstract

New evidence from collocated measurements, with support from theory and numerical simulations, that multidirectional measurements in the oxygen A band from the third Polarization and Directionality of the Earth’s Reflectances (POLDER-3) instrument on the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite platform within the “A-Train” can help to characterize the vertical structure of clouds is presented. In the case of monolayered clouds, the standard POLDER cloud oxygen pressure product PO2 is shown to be sensitive to the cloud geometrical thickness H in two complementary ways: 1) PO2 is, on average, close to the pressure at the geometrical middle of the cloud layer (MCP) and methods are proposed for reducing the pressure difference PO2 − MCP and 2) the angular standard deviation of PO2 and the cloud geometrical thickness H are tightly correlated for liquid clouds. Accounting for cloud phase, there is thus the potential to obtain a statistically reasonable estimate of H. Such derivation from passive measurements, as compared with or supplementing other observations, is expected to be of interest in a broad range of applications for which it is important to define better the macrophysical cloud parameters in a practical way.

Corresponding author address: Nicolas Ferlay, Laboratoire d’Optique Atmosphérique, UFR de Physique, Université Lille 1, Sciences et Technologies, Villeneuve d’Ascq, 59655 CEDEX, France. Email: nicolas.ferlay@univ-lille1.fr

Abstract

New evidence from collocated measurements, with support from theory and numerical simulations, that multidirectional measurements in the oxygen A band from the third Polarization and Directionality of the Earth’s Reflectances (POLDER-3) instrument on the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite platform within the “A-Train” can help to characterize the vertical structure of clouds is presented. In the case of monolayered clouds, the standard POLDER cloud oxygen pressure product PO2 is shown to be sensitive to the cloud geometrical thickness H in two complementary ways: 1) PO2 is, on average, close to the pressure at the geometrical middle of the cloud layer (MCP) and methods are proposed for reducing the pressure difference PO2 − MCP and 2) the angular standard deviation of PO2 and the cloud geometrical thickness H are tightly correlated for liquid clouds. Accounting for cloud phase, there is thus the potential to obtain a statistically reasonable estimate of H. Such derivation from passive measurements, as compared with or supplementing other observations, is expected to be of interest in a broad range of applications for which it is important to define better the macrophysical cloud parameters in a practical way.

Corresponding author address: Nicolas Ferlay, Laboratoire d’Optique Atmosphérique, UFR de Physique, Université Lille 1, Sciences et Technologies, Villeneuve d’Ascq, 59655 CEDEX, France. Email: nicolas.ferlay@univ-lille1.fr

Save