• Ailliot, P., , V. Monbet, , and M. Prevosto, 2006: An autoregressive model with time-varying coefficients for wind fields. Environmetrics, 17 , 107117.

    • Search Google Scholar
    • Export Citation
  • Akhmatov, V., 2007: Influence of wind direction on intense power fluctuations in large offshore windfarms in the north sea. Wind Eng., 31 , 5964.

    • Search Google Scholar
    • Export Citation
  • Akhmatov, V., , C. Rasmussen, , P. B. Eriksen, , and J. Pedersen, 2007: Technical aspects of status and expected future trends for wind power in Denmark. Wind Energy (Chichester Engl.), 10 , 3149.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , C. A. Geiger, , G. Treviño, , and K. J. Claffey, 2008: Identifying nonstationarity in turbulence series. Bound.-Layer Meteor., 127 , 3756.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., , P. Drobinski, , C. Fesquet, , T. Dubos, , and C. Pietras, 2007: Long-term study of coherent structures in the atmospheric surface layer. Bound.-Layer Meteor., 125 , 124.

    • Search Google Scholar
    • Export Citation
  • Boashash, B., 1992: Estimating and interpreting the instantaneous frequency of a signal, part 1: Fundamentals. Proc. IEEE, 80 , 520538.

    • Search Google Scholar
    • Export Citation
  • Brown, B., , R. Katz, , and A. Murphy, 1984: Time series models to simulate and forecast wind speed and wind power. J. Climate Appl. Meteor., 23 , 11841195.

    • Search Google Scholar
    • Export Citation
  • Coelingh, J., , A. van Wijk, , and A. Holtslag, 1998: Analysis of wind speed observations over the North Sea coast. J. Wind Eng. Ind. Aerodyn., 73 , 125144.

    • Search Google Scholar
    • Export Citation
  • Cohen, L., 1989: Time-frequency distributions—A review. Proc. IEEE, 77 , 941981.

  • Cohen, L., 1995: Time Frequency Analysis. Prentice-Hall, 320 pp.

  • Dickey, D. A., , D. P. Hasza, , and W. A. Fuller, 1984: Testing for unit roots in seasonal time series. J. Amer. Stat. Assoc., 79 , 355367.

    • Search Google Scholar
    • Export Citation
  • Duffy, D., 2004: The application of Hilbert–Huang transforms to meteorological datasets. J. Atmos. Oceanic Technol., 21 , 599611.

  • Flandrin, P., , G. Rilling, , and P. Goncalves, 2004: Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett., 11 , 112114.

    • Search Google Scholar
    • Export Citation
  • Focken, U., , M. Lange, , K. Mönnich, , H-P. Wadl, , H. G. Beyer, , and A. Luig, 2002: Short-term prediction of the aggregated power output of wind farms–A statistical analysis of the reduction of the prediction error by spatial smoothing effects. J. Wind Eng. Ind. Aerodyn., 90 , 231246.

    • Search Google Scholar
    • Export Citation
  • Gabor, D., 1946: Theory of communication. J. Inst. Electr. Eng., 93 , 429457.

  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40 , 1003. doi:10.1029/2000RG000092.

  • Giebel, G., 2007: A variance analysis of the capacity displaced by wind energy in Europe. Wind Energy (Chichester Engl.), 10 , 6779.

  • Hocke, K., , and N. Kämpfer, 2008: Gap filling and noise reduction of unevenly sampled data by means of the lomb-scargle periodogram. Atmos. Chem. Phys., 8 , 46034623.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 1984: Estimates of diabatic wind speed profiles from near-surface weather observations. Bound.-Layer Meteor., 29 , 225250.

    • Search Google Scholar
    • Export Citation
  • Huang, N., 2005a: Computing Instantaneous Frequency by Normalizing Hilbert Transform. U.S. Patent Office, 23 pp.

  • Huang, N., 2005b: Hilbert–Huang Transform and Its Applications. World Scientific Publishing Company, 311 pp.

  • Huang, N., , and Z. Wu, 2008: A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46 , RG2006. doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, N., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. A, 454 , 903995.

    • Search Google Scholar
    • Export Citation
  • Huang, N., , M. C. Wu, , S. R. Long, , S. S. P. Shen, , W. Qu, , P. Gloersen, , and K. L. Fan, 2003: A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. Roy. Soc. A, 459 , 23172345.

    • Search Google Scholar
    • Export Citation
  • Huang, N., , Z. Wu, , S. Long, , K. Arnold, , X. Chen, , and K. Blank, 2009: On instantaneous frequency. Adv. Adapt. Data Anal., 1 , 177229.

  • Kim, D., , S-H. Paek, , and H-S. Oh, 2008: A Hilbert–Huang transform approach for prediction cyber-attacks. J. Korean Stat. Soc., 37 , 277283.

    • Search Google Scholar
    • Export Citation
  • Labat, D., 2005: Recent advances in wavelet analysis: Part 1. A review of concepts. J. Hydrol., 314 , 275288.

  • Madsen, H., 2007: Time Series Analysis. Chapman & Hall, 380 pp.

  • Nielsen, H. A., , and H. Madsen, 2001: A generalization of some classical time series tools. Comput. Stat. Data Anal., 37 , 1331.

  • Peña, A., , and S-E. Gryning, 2008: Charnock’s roughness length model and non-dimensional wind profiles over the sea. Bound.-Layer Meteor., 128 , 191203.

    • Search Google Scholar
    • Export Citation
  • Peng, Z. K., , P. W. Tse, , and F. L. Chu, 2005: An improved Hilbert–Huang transform and its application in vibration signal analysis. J. Sound Vib., 286 , 187205.

    • Search Google Scholar
    • Export Citation
  • Pinson, P., , and H. Madsen, 2009: Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. Technical University of Denmark, DTU Informatics, Tech. Rep. IMM-2009-11.

    • Search Google Scholar
    • Export Citation
  • Pinson, P., , L. E. Christensen, , H. Madsen, , P. Sørensen, , M. H. Donovan, , and L. E. Jensen, 2008: Regime-switching modelling of the fluctuations of offshore wind generation. J. Wind Eng. Ind. Aerodyn., 96 , 23272347.

    • Search Google Scholar
    • Export Citation
  • Rao, A., , and E. Hsu, 2008: Hilbert–Huang Transform Analysis of Hydrological and Environmental Time Series. Springer, 372 pp.

  • Rilling, G., , P. Flandrin, , P. Goncalves, , and J. M. Lilly, 2007: Bivariate empirical mode decomposition. IEEE Signal Process. Lett., 14 , 936939.

    • Search Google Scholar
    • Export Citation
  • Schreiber, T., 1997: Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys. Rev. Lett., 78 , 843846.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., , T. Shu, , N. E. Huang, , Z. Wu, , G. R. North, , T. R. Karl, , and D. R. Easterling, 2005: HHT analysis of the nonlinear and non-stationary annual cycle of daily surface air temperature data. Hilbert–Huang Transform and Its Applications, N. E. Huang and S. S. P. Shen, Eds., World Scientific Publishing, 187–209.

    • Search Google Scholar
    • Export Citation
  • Sørensen, P., , N. A. Cutululis, , A. Vigueras-Rodríguez, , H. Madsen, , P. Pinson, , L. Jensen, , J. Hjerrild, , and M. Donovan, 2008: Modelling of power fluctuations from large offshore wind farms. Wind Energy (Chichester Engl.), 11 , 2943.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sweeney-Reed, C. M., , and S. J. Nasuto, 2007: A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. J. Comput. Neurosci., 23 , 79111.

    • Search Google Scholar
    • Export Citation
  • Veltcheva, A. D., , and C. Guedes Soares, 2004: Identification of the components of wave spectra by the Hilbert Huang transform method. Appl. Ocean Res., 26 , 112.

    • Search Google Scholar
    • Export Citation
  • Veltcheva, A. D., , and C. Guedes Soares, 2007: Analysis of abnormal wave records by the Hilbert–Huang transform method. J. Atmos. Oceanic Technol., 24 , 16781689.

    • Search Google Scholar
    • Export Citation
  • Von Sachs, R., , and M. H. Neumann, 2000: A wavelet-based test for stationarity. J. Time Ser. Anal., 21 , 597613.

  • Wieringa, J., 1989: Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Layer Meteor., 47 , 85110.

    • Search Google Scholar
    • Export Citation
  • Witt, A., , J. Kurths, , and A. Pikovsky, 1998: Testing stationarity in time series. Phys. Rev. E, 58 , 18001810.

  • Wu, Z., , and N. Huang, 2004: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. A, 460 , 15971611.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , and N. Huang, 2009: Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adapt. Data Anal., 1 , 141.

    • Search Google Scholar
    • Export Citation
  • Yiou, P., , D. Sornette, , and M. Ghil, 2000: Data-adaptive wavelets and multi-scale singular-spectrum analysis. Physica D, 142 , 254290.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 3
PDF Downloads 38 38 3

Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert–Huang Transform

View More View Less
  • 1 Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde, Denmark
  • | 2 Department of Informatics and Mathematical Modeling, Technical University of Denmark, Lyngby, Denmark
© Get Permissions
Restricted access

Abstract

This work is motivated by the observation that large-amplitude wind fluctuations on temporal scales of 1–10 h present challenges for the power management of large offshore wind farms. Wind fluctuations on these scales are analyzed at a meteorological measurement mast in the Danish North Sea using a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized to show climatological patterns in the relationship between wind variability and time of day. First, by integrating the Hilbert spectrum along the frequency axis, a scalar time series representing the total variability within a given frequency range is calculated. Second, by calculating average spectra conditional to time of day, the time axis of the Hilbert spectrum is “remapped” to show climatological patterns. Third, the daily patterns in wind variability and wind speed are compared for the four seasons of the year. It is found that the most intense wind variability occurs in autumn even though the strongest observed wind speeds occur in winter.

Corresponding author address: Claire Vincent, Risø-DTU National Laboratory for Sustainable Energy, Frederiksborgvej 399, P.O. Box 49, Roskilde 4000, Denmark. Email: clav@risoe.dtu.dk

Abstract

This work is motivated by the observation that large-amplitude wind fluctuations on temporal scales of 1–10 h present challenges for the power management of large offshore wind farms. Wind fluctuations on these scales are analyzed at a meteorological measurement mast in the Danish North Sea using a 4-yr time series of 10-min wind speed observations. An adaptive spectral analysis method called the Hilbert–Huang transform is chosen for the analysis, because the nonstationarity of time series of wind speed observations means that they are not well described by a global spectral analysis method such as the Fourier transform. The Hilbert–Huang transform is a local method based on a nonparametric and empirical decomposition of the data followed by calculation of instantaneous amplitudes and frequencies using the Hilbert transform. The Hilbert–Huang transformed 4-yr time series is averaged and summarized to show climatological patterns in the relationship between wind variability and time of day. First, by integrating the Hilbert spectrum along the frequency axis, a scalar time series representing the total variability within a given frequency range is calculated. Second, by calculating average spectra conditional to time of day, the time axis of the Hilbert spectrum is “remapped” to show climatological patterns. Third, the daily patterns in wind variability and wind speed are compared for the four seasons of the year. It is found that the most intense wind variability occurs in autumn even though the strongest observed wind speeds occur in winter.

Corresponding author address: Claire Vincent, Risø-DTU National Laboratory for Sustainable Energy, Frederiksborgvej 399, P.O. Box 49, Roskilde 4000, Denmark. Email: clav@risoe.dtu.dk

Save