• Allen, P. B., , and J. W. Naney, 1991: Hydrology of the Little Washita River Watershed, Oklahoma: Data and analysis. USDA Agricultural Research Service Tech. Rep. USDA/ARS-90, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531071.

  • Berenguer, M., , and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23 , 10851101.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , S. Degli Esposti, , and D. Norbiato, 2006: Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resour. Res., 42 , W08409. doi:10.1029/2005WR004559.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., , K. C. Crawford, , R. L. Elliott, , G. W. Cuperus, , S. J. Stadler, , H. L. Johnson, , and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12 , 519.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Ciach, G. J., , and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv. Water Resour., 29 , 14501463.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , W. F. Krajewski, , and G. Villarini, 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8 , 13251347.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., 1986: Accuracy of rainfall estimates by radar. Part II: Comparison with rain gauge network. J. Hydrol., 83 , 225235.

  • Collier, C. G., 2009: On the propagation of uncertainty in weather radar estimates of rainfall through hydrological models. Meteor. Appl., 16 , 3540.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., , and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74 , 16691687.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., , R. E. Saffle, , and J. W. Wilson, 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13 , 253262.

    • Search Google Scholar
    • Export Citation
  • Elliott, R. L., , F. V. Brock, , M. L. Stone, , and S. L. Harp, 1994: Configuration decision for an automated weather station network. Appl. Eng. Agric., 10 , 4551.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , G. L. Austin, , and D. Tees, 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118 , 435453.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., , J. P. Breidenbach, , D. J. Seo, , D. A. Miller, , and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , G. Galli, , M. Boscacci, , and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132 , 16691692.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , M. Berenguer, , D. Sempere-Torres, , and M. Zappa, 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135 , 445456.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , W. F. Krajewski, , and G. J. Ciach, 2001a: Estimation of rainfall interstation correlation. J. Hydrometeor., 2 , 621629.

  • Habib, E., , W. F. Krajewski, , and A. Kruger, 2001b: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6 , 159166.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , A. V. Aduvala, , and E. A. Meselhe, 2008a: Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrol. Sci. J., 53 , 568587.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , C. G. Malakpet, , A. Tokay, , and P. A. Kucera, 2008b: Sensitivity of streamflow simulations to temporal variability and estimation of ZR relationships. J. Hydrol. Eng., 13 , 11771186.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., , E. J. English, , and C. A. Nicholas, 1974: The accuracy of radar-derived rainfall measurements in hilly terrain. Quart. J. Roy. Meteor. Soc., 100 , 331350.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and A. Waldvogel, 1990: Precipitation measurements and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., , and R. M. Blackall, 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134 , 1333.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., , and P. M. Jackson, 1993: Weather radar performance at long range – Simulated and observed. J. Appl. Meteor., 32 , 975985.

    • Search Google Scholar
    • Export Citation
  • Klazura, G. E., , and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74 , 12931311.

    • Search Google Scholar
    • Export Citation
  • Kowalski, C. J., 1972: On the effects of non-normality on the distribution of the sample product-moment correlation coefficient. Appl. Stat., 21 , 112.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , and J. A. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25 , 13871394.

  • Krajewski, W. F., , B. C. Seo, , A. Kruger, , P. Domaszczybski, , G. Villarini, , and C. Gunyon, 2007a: Hydro-NEXRAD radar-rainfall estimation algorithm development, testing, and evaluation. Proc. World Environmental and Water Resources Congress 2007, Tampa, FL, Environmental and Water Resources Institute.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2007b: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. Proc. World Environmental and Water Resources Congress 2007, Tampa, FL, Environmental and Water Resources Institute.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2008: Hydro-NEXRAD: An updated overview and metadata analysis. Proc. World Environmental and Water Resources Congress 2008, Honolulu, HI, Environmental and Water Resources Institute.

    • Search Google Scholar
    • Export Citation
  • Lee, G., , and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44 , 241255.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marshall, J. S., , W. Hitschfeld, , and K. L. S. Gunn, Eds.,. 1955: Advances in radar weather. Advances in Geophysics, Vol. 2, Academic Press, 1–56.

    • Search Google Scholar
    • Export Citation
  • Moore, R. J., , D. A. Jones, , D. R. Cox, , and V. S. Isham, 2000: Design of the HYREX rain gauge network. Hydrol. Earth Syst. Sci., 4 , 523530.

    • Search Google Scholar
    • Export Citation
  • Reed, S. M., , and D. R. Maidment, 1999: Coordinate transformation for using NEXRAD data in GIS-based hydrologic modeling. J. Hydraul. Eng., 4 , 174182.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , D. B. Wolff, , and D. Atlas, 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32 , 5072.

    • Search Google Scholar
    • Export Citation
  • Serinaldi, F., 2008: Analysis of inter-gauge dependence by Kendall’s τK upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stochastic Environ. Res. Risk Assess., 22 , 671688.

    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., , F. L. Ogden, , W. F. Krajewski, , and M. Xue, 2002: Numerical simulations of radar rainfall error propagation. Water Resour. Res., 38 , 1140. doi:10.1029/2001WR000525.

    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., , F. L. Ogden, , W. F. Krajewski, , and M. Xue, 2004: Statistical analysis of radar rainfall error propagation. J. Hydrometeor., 5 , 199212.

    • Search Google Scholar
    • Export Citation
  • Smith, C. J., 1986: The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J. Atmos. Oceanic Technol., 3 , 129141.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , D. J. Seo, , M. L. Baeck, , and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32 , 20352045.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor., 39 , 19231940.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19 , 673686.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , M. Steiner, , and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4 , 4361.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and W. F. Krajewski, 2008: Empirically based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour., 31 , 10151023.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and W. F. Krajewski, 2009a: Empirically based modelling of radar-rainfall uncertainties for a C-band radar at different time scales. Quart. J. Roy. Meteor. Soc., 135 , 14241438. doi:10.1002/qj.454.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and W. F. Krajewski, 2009b: Inference of spatial scaling properties of rainfall: Impact of radar-rainfall estimation uncertainties. IEEE Geosci. Remote Sens. Lett., 6 , 812815.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and W. F. Krajewski, 2010: Review of the different sources of uncertainty in single-polarization radar-based estimates of rainfall. Surv. Geophys., 31 , 107129.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , P. V. Mandapaka, , W. F. Krajewski, , and R. J. Moore, 2008a: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113 , D11102. doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , F. Serinaldi, , and W. F. Krajewski, 2008b: Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Adv. Water Resour., 31 , 16741686.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , W. F. Krajewski, , G. J. Ciach, , and D. L. Zimmerman, 2009a: Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res., 45 , W01404. doi:10.1029/2008WR006946.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , W. F. Krajewski, , and J. A. Smith, 2009b: New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° three-hourly estimates over Oklahoma. J. Geophys. Res., 114 , D12106. doi:10.1029/2008JD011475.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and E. A. Brandes, 1979: Radar measurement of rainfall – A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

  • Winchell, M., , H. V. Gupta, , and S. Sorooshian, 1998: On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation. Water Resour. Res., 34 , 26552670.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1984: Factors affecting the precision of radar measurement of rain. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 4
PDF Downloads 11 11 2

Sensitivity Studies of the Models of Radar-Rainfall Uncertainties

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
© Get Permissions
Restricted access

Abstract

It is well acknowledged that there are large uncertainties associated with the operational quantitative precipitation estimates produced by the U.S. national network of the Weather Surveillance Radar-1988 Doppler (WSR-88D). These errors result from the measurement principles, parameter estimation, and the not fully understood physical processes. Even though comprehensive quantitative evaluation of the total radar-rainfall uncertainties has been the object of earlier studies, an open question remains concerning how the error model results are affected by parameter values and correction setups in the radar-rainfall algorithms. This study focuses on the effects of different exponents in the reflectivity–rainfall (ZR) relation [Marshall–Palmer, default Next Generation Weather Radar (NEXRAD), and tropical] and the impact of an anomalous propagation removal algorithm. To address this issue, the authors apply an empirically based model in which the relation between true rainfall and radar rainfall could be described as the product of a systematic distortion function and a random component. Additionally, they extend the error model to describe the radar-rainfall uncertainties in an additive form. This approach is fully empirically based, and rain gauge measurements are considered as an approximation of the true rainfall. The proposed results are based on a large sample (6 yr) of data from the Oklahoma City radar (KTLX) and processed through the Hydro-NEXRAD software system. The radar data are complemented with the corresponding rain gauge observations from the Oklahoma Mesonet and the Agricultural Research Service Micronet.

Corresponding author address: Gabriele Villarini, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540. Email: gvillari@princeton.edu

Abstract

It is well acknowledged that there are large uncertainties associated with the operational quantitative precipitation estimates produced by the U.S. national network of the Weather Surveillance Radar-1988 Doppler (WSR-88D). These errors result from the measurement principles, parameter estimation, and the not fully understood physical processes. Even though comprehensive quantitative evaluation of the total radar-rainfall uncertainties has been the object of earlier studies, an open question remains concerning how the error model results are affected by parameter values and correction setups in the radar-rainfall algorithms. This study focuses on the effects of different exponents in the reflectivity–rainfall (ZR) relation [Marshall–Palmer, default Next Generation Weather Radar (NEXRAD), and tropical] and the impact of an anomalous propagation removal algorithm. To address this issue, the authors apply an empirically based model in which the relation between true rainfall and radar rainfall could be described as the product of a systematic distortion function and a random component. Additionally, they extend the error model to describe the radar-rainfall uncertainties in an additive form. This approach is fully empirically based, and rain gauge measurements are considered as an approximation of the true rainfall. The proposed results are based on a large sample (6 yr) of data from the Oklahoma City radar (KTLX) and processed through the Hydro-NEXRAD software system. The radar data are complemented with the corresponding rain gauge observations from the Oklahoma Mesonet and the Agricultural Research Service Micronet.

Corresponding author address: Gabriele Villarini, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540. Email: gvillari@princeton.edu

Save