• Adler, R. F., , G. J. Huffman, , D. T. Bolvin, , S. C. Urtis, , and E. J. Nelkin, 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteor., 39 , 20072023.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., 2000: Systematic variation of observed radar reflectivity–rainfall rate relations in the tropics. J. Appl. Meteor., 39 , 21982208.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., , W. F. Krajewski, , and J. Smith, 1999: Uncertainty quantification of mean-areal radar-rainfall estimates. J. Atmos. Oceanic Technol., 16 , 206215.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., 1991: An empirical method of estimating raingauge and radar rainfall measurement bias and resolution. J. Appl. Meteor., 30 , 282296.

    • Search Google Scholar
    • Export Citation
  • Ciach, J. G., , and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22 , 585595.

  • Ciach, J. G., , and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv. Water Resour., 29 , 14501463.

    • Search Google Scholar
    • Export Citation
  • Cressie, N. A. C., 1993: Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, 900 pp.

    • Search Google Scholar
    • Export Citation
  • Datta, S., , W. L. Jones, , B. Roy, , and A. Tokay, 2003: Spatial variability of surface rainfall as observed from TRMM field campaign data. J. Appl. Meteor., 42 , 598610.

    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2007: Statistical error decomposition of regional-scale climatological precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor. Climatol., 46 , 791813.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , and W. F. Krajewski, 2002: Uncertainty analysis of the TRMM Ground-Validation Radar rain products: Application to the TEFLUN-B Field Campaign. J. Appl. Meteor., 41 , 558572.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , W. F. Krajewski, , and G. J. Ciach, 2001a: Estimation of rainfall interstation correlation. J. Hydrometeor., 2 , 621629.

  • Habib, E., , W. F. Krajewski, , and A. Kruger, 2001b: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6 , 159166.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , G. J. Ciach, , and W. F. Krajewski, 2004: A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv. Water Resour., 27 , 967980.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., , E. J. English, , and C. A. Nicholass, 1974: The accuracy of radar derived rainfall measurements in hilly terrain. Quart. J. Roy. Meteor. Soc., 100 , 331350.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., , S. Brodzik, , C. Schumacher, , and S. E. Yuter, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43 , 11141132.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and A. Waldvogel, 1990: Precipitation measurement and hydrology. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., , and R. M. Blackall, 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134 , 1333.

    • Search Google Scholar
    • Export Citation
  • Kowalski, C. J., 1972: On the effect of non-normality on the distribution of the sample product-moment correlation coefficient. Appl. Stat., 27 , 112.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., 1987: Cokriging radar rainfall and rain gage data. J. Geophys. Res., 92 , 95719580.

  • Krajewski, W. F., , and C. J. Duffy, 1988: Estimation of correlation structure for a homogeneous isotropic random field: A simulation study. Comput. Geosci., 14 , 113122.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , G. J. Ciach, , and E. Habib, 2003: An analysis of small-scale rainfall variability in different climatic regimes. Hydrol. Sci. J., 48 , 151162.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lai, C. D., , J. C. W. Rayner, , and T. P. Hutchinson, 1999: Robustness of the sample correlation—The bivariate lognormal case. J. Appl. Math. Decis. Sci., 3 , 719.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., , B. P. Flannery, , S. A. Teukolsky, , and W. T. Vetterling, 1988: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 818 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , D. B. Wolff, , and E. Amitai, 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33 , 682693.

    • Search Google Scholar
    • Export Citation
  • Shimizu, K., 1993: A bivariate mixed lognormal distribution with an analysis of rainfall data. J. Appl. Meteor., 32 , 161171.

  • Sieck, L. C., , S. J. Burges, , and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43 , W01420. doi:10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. S., , C. Kummerow, , W-K. Tao, , and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Stedinger, J. R., 1981: Estimating correlations in multivariate streamflow models. Water Resour. Res., 17 , 200208.

  • Villarini, G., , P. V. Mandapaka, , W. F. Krajewski, , and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113 , D11102. doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and D. B. Wolff, 2009: Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic Technol., 26 , 857875.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , B. L. Fisher, , and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25 , 4356.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., , D. A. Marks, , E. Amitai, , D. S. Silberstein, , B. L. Fisher, , A. Tokay, , J. Wang, , and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., 1975: On radar-raingage comparison. J. Appl. Meteor., 14 , 14301436.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 6
PDF Downloads 28 28 3

Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements

View More View Less
  • 1 Science System and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) space-based rain estimates, and, hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar–gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar–gauge differences into the gauge area–point error variance and radar-rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar-rain estimates at various time scales and are helpful to understand better the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar-rain products to validate versatile space-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement satellite and other satellites.

Corresponding author address: Jianxin Wang, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: jianxin.wang@nasa.gov

Abstract

Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) space-based rain estimates, and, hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar–gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar–gauge differences into the gauge area–point error variance and radar-rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar-rain estimates at various time scales and are helpful to understand better the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar-rain products to validate versatile space-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement satellite and other satellites.

Corresponding author address: Jianxin Wang, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: jianxin.wang@nasa.gov

Save