• Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53 , 28032812.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43 , 19451960.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , M. J. Markus, , D. D. Fen, , G. Szejwach, , and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22 , 579593.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , M. J. Markus, , and D. D. Fenn, 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113 , 769781.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., , W. F. Feltz, , J. R. Mecikalksi, , R. D. Sharman, , A. Lenz, , and J. Gerth, 2007: Satellite signatures associated with significant convectively-induced turbulence events. Proc. Joint Meteorological Satellite and 15th Satellite Meteorology and Oceanography Conf., Amsterdam, Netherlands, EUMETSAT and Amer. Meteor. Soc. [Available online at http://www.eumetsat.int/Home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/2007/SP_1232700283028?l=en].

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., , J. R. Mecikalski, , W. M. MacKenzie Jr., , K. M. Bedka, , and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113 , D20207. doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., , S. A. Ackerman, , A. S. Bachmeier, , and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22 , 853872.

    • Search Google Scholar
    • Export Citation
  • Chemel, C., , M. R. Russo, , J. A. Pyle, , R. S. Sokhi, , and C. Schiller, 2008: Quantifying the imprint of a severe hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere. Mon. Wea. Rev., 137 , 24932514.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., , and B. Carmichael, 1993: Varied research efforts are under way to find means of avoiding air turbulence. ICAO J., 48 , 1015.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., , C. S. Morse, , and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircr., 32 , 171177.

    • Search Google Scholar
    • Export Citation
  • FAA, cited. 2004: Review of aviation accidents involving weather turbulence in the United States, 1992-2001. National Aviation Safety Data Analysis Center Doc. 04-551, FAA Office of System Safety. [Available online at http://www.asias.faa.gov/aviation_studies/turbulence_study/turbulence_study_new.pdf].

    • Search Google Scholar
    • Export Citation
  • Fritz, S., , and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98 , (D12). 2295922967.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60 , 355368.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1992: Memoirs of an effort to unlock the mystery of severe storms. WRL Research Paper 239, University of Chicago Wind Research Lab, 298 pp.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed. 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Heidinger, A. K., , C. O’Dell, , R. Bennartz, , and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45 , 13881402.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , R. Fulton, , and J. D. Spinhirne, 1991: Aircraft overflight measurements of Midwest severe storms: Implications and geosynchronous satellite interpretations. Mon. Wea. Rev., 119 , 436456.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 1999: Temperature, humidity, and wind at the global tropopause. Mon. Wea. Rev., 127 , 22482265.

  • Koshak, W. J., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Oceanic Technol., 21 , 543558.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , and W. Barnes, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , R. D. Sharman, , T. L. Clark, , and H. M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80 , 271284.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., , and M. Setvak, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53 , 361369.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., , and L. Grasso, 2008: An effective radius retrieval for thick ice clouds using GOES. J. Appl. Meteor. Climatol., 47 , 12221231.

    • Search Google Scholar
    • Export Citation
  • Lindstrom, S. S., , C. C. Schmidt, , E. M. Prins, , J. Hoffman, , J. Brunner, , and T. J. Schmit, 2008: Proxy ABI datasets relevant for fire detection that are derived from MODIS data. Preprints, Fifth GOES Users’s Conf., New Orleans, LA, Amer. Meteor. Soc., P1.35. [Available online at http://ams.confex.com/ams/pdfpapers/132606.pdf].

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110 , D23104. doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61 , 13741387.

  • Martin, D. W., , R. A. Kohrs, , F. R. Mosher, , C. M. Medaglia, , and C. Adamo, 2008: Over-ocean validation of the Global Convective Diagnostic. J. Appl. Meteor. Climatol., 47 , 525543.

    • Search Google Scholar
    • Export Citation
  • Mitrescu, C., , S. Miller, , J. Hawkins, , T. L’Ecuyer, , J. Turk, , P. Partain, , and G. Stephens, 2008: Near-real-time applications of CloudSat data. J. Appl. Meteor. Climatol., 47 , 19821994.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornado storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63 , 18511859.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., , and R. F. Adler, 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20 , 288300.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 2008: Development of the National Lightning Detection Network. Bull. Amer. Meteor. Soc., 89 , 180190.

  • Otkin, J. A., , T. J. Greenwald, , J. Sieglaff, , and H. L. Huang, 2009: Validation of a large-scale simulated brightness temperature dataset using SEVIRI satellite observations. J. Appl. Meteor. Climatol., 48 , 16131626.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 1980: Observations of damaging hailstorms from geosynchronous satellite digital data. Mon. Wea. Rev., 108 , 337348.

  • Rosenfeld, D., , W. L. Woodley, , A. Lerner, , G. Kelman, , and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113 , D04208. doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., , S. A. Tjemkes, , M. Gube, , and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19 , 433441.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., , P. Pili, , S. Tjemkes, , D. Just, , J. Kerkmann, , S. Rota, , and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., , M. M. Gunshor, , W. P. Menzel, , J. J. Gurka, , J. Li, , and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Search Google Scholar
    • Export Citation
  • Setvak, M., , R. M. Rabin, , and P. K. Wang, 2007: Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res., 83 , 505518.

    • Search Google Scholar
    • Export Citation
  • Setvak, M., , D. T. Lindsey, , P. Novak, , R. M. Rabin, , P. K. Wang, , J. Kerkmann, , M. Radova, , and J. Stastka, 2008a: Cold-ring shaped storms in central Europe. Proc. 2008 EUMETSAT Meteorological Satellite Conf., Darmstadt, Germany, EUMETSAT. [Available online at http://www.eumetsat.int/Home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/2008/SP_1232700911980?l=en].

    • Search Google Scholar
    • Export Citation
  • Setvak, M., , D. T. Lindsey, , R. M. Rabin, , P. K. Wang, , and A. Demeterova, 2008b: Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite observations and radiative transfer model simulations. Atmos. Res., 89 , 170180.

    • Search Google Scholar
    • Export Citation
  • Sharman, R., , L. Cornman, , J. K. Williams, , S. E. Koch, , and W. R. Moninger, 2006: The FAA AWRP Turbulence PDT. Preprints, 12th Conf. on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 3.3. [Available online at http://ams.confex.com/ams/pdfpapers/104014.pdf].

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , W. Wang, , and J. G. Powers, 2007: A description of the Advanced Research WRF Version 2. NCAR Tech. Note NCAR/TN-468+STR, 100 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and CloudSat Science Team, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108 , 4194. doi:10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., , S. A. Rutledge, , and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., , and R. D. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47 , 21982214.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51 , 833851.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 287 66
PDF Downloads 247 247 61

Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Deep convective storms with overshooting tops (OTs) are capable of producing hazardous weather conditions such as aviation turbulence, frequent lightning, heavy rainfall, large hail, damaging wind, and tornadoes. This paper presents a new objective infrared-only satellite OT detection method called infrared window (IRW)-texture. This method uses a combination of 1) infrared window channel brightness temperature (BT) gradients, 2) an NWP tropopause temperature forecast, and 3) OT size and BT criteria defined through analysis of 450 thunderstorm events within 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) imagery. Qualitative validation of the IRW-texture and the well-documented water vapor (WV) minus IRW BT difference (BTD) technique is performed using visible channel imagery, CloudSat Cloud Profiling Radar, and/or Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud-top height for selected cases. Quantitative validation of these two techniques is obtained though comparison with OT detections from synthetic satellite imagery derived from a cloud-resolving NWP simulation. The results show that the IRW-texture method false-alarm rate ranges from 4.2% to 38.8%, depending upon the magnitude of the overshooting and algorithm quality control settings. The results also show that this method offers a significant improvement over the WV-IRW BTD technique. A 5-yr Geosynchronous Operational Environmental Satellite (GOES)-12 OT climatology shows that OTs occur frequently over the Gulf Stream and Great Plains during the nighttime hours, which underscores the importance of using a day/night infrared-only detection algorithm. GOES-12 OT detections are compared with objective Eddy Dissipation Rate Turbulence and National Lightning Detection Network observations to show the strong relationship among OTs, aviation turbulence, and cloud-to-ground lightning activity.

Corresponding author address: Kristopher M. Bedka, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: kristopher.bedka@ssec.wisc.edu

Abstract

Deep convective storms with overshooting tops (OTs) are capable of producing hazardous weather conditions such as aviation turbulence, frequent lightning, heavy rainfall, large hail, damaging wind, and tornadoes. This paper presents a new objective infrared-only satellite OT detection method called infrared window (IRW)-texture. This method uses a combination of 1) infrared window channel brightness temperature (BT) gradients, 2) an NWP tropopause temperature forecast, and 3) OT size and BT criteria defined through analysis of 450 thunderstorm events within 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) imagery. Qualitative validation of the IRW-texture and the well-documented water vapor (WV) minus IRW BT difference (BTD) technique is performed using visible channel imagery, CloudSat Cloud Profiling Radar, and/or Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud-top height for selected cases. Quantitative validation of these two techniques is obtained though comparison with OT detections from synthetic satellite imagery derived from a cloud-resolving NWP simulation. The results show that the IRW-texture method false-alarm rate ranges from 4.2% to 38.8%, depending upon the magnitude of the overshooting and algorithm quality control settings. The results also show that this method offers a significant improvement over the WV-IRW BTD technique. A 5-yr Geosynchronous Operational Environmental Satellite (GOES)-12 OT climatology shows that OTs occur frequently over the Gulf Stream and Great Plains during the nighttime hours, which underscores the importance of using a day/night infrared-only detection algorithm. GOES-12 OT detections are compared with objective Eddy Dissipation Rate Turbulence and National Lightning Detection Network observations to show the strong relationship among OTs, aviation turbulence, and cloud-to-ground lightning activity.

Corresponding author address: Kristopher M. Bedka, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: kristopher.bedka@ssec.wisc.edu

Save