Intercomparison of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations for a Season of Record Rainfall

Jonathan J. Gourley NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jonathan J. Gourley in
Current site
Google Scholar
PubMed
Close
,
Yang Hong Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
,
Zachary L. Flamig NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Zachary L. Flamig in
Current site
Google Scholar
PubMed
Close
,
Li Li Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Li Li in
Current site
Google Scholar
PubMed
Close
, and
Jiahu Wang Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jiahu Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall products from radar, satellite, rain gauges, and combinations have been evaluated for a season of record rainfall in a heavily instrumented study domain in Oklahoma. Algorithm performance is evaluated in terms of spatial scale, temporal scale, and rainfall intensity. Results from this study will help users of rainfall products to understand their errors. Moreover, it is intended that developers of rainfall algorithms will use the results presented herein to optimize the contribution from available sensors to yield the most skillful multisensor rainfall products.

Corresponding author address: Jonathan J. Gourley, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7303. Email: jj.gourley@noaa.gov

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

Rainfall products from radar, satellite, rain gauges, and combinations have been evaluated for a season of record rainfall in a heavily instrumented study domain in Oklahoma. Algorithm performance is evaluated in terms of spatial scale, temporal scale, and rainfall intensity. Results from this study will help users of rainfall products to understand their errors. Moreover, it is intended that developers of rainfall algorithms will use the results presented herein to optimize the contribution from available sensors to yield the most skillful multisensor rainfall products.

Corresponding author address: Jonathan J. Gourley, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072-7303. Email: jj.gourley@noaa.gov

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Anagnostou, E. N., 2004: Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surv. Geophys., 25 , 511537.

    • Search Google Scholar
    • Export Citation
  • Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. McManus, and D. B. Demko, 2009: Observations of the overland reintensification of Tropical Storm Erin (2007). Bull. Amer. Meteor. Soc., 90 , 10791093.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115 , 10531070.

  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and W. F. Krajewski, 2004: Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites. J. Geophys. Res., 109 , D11110. doi:10.1029/2004JD004509.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., R. A. Maddox, D. W. Burgess, and K. W. Howard, 2002: An exploratory multisensor technique for quantitative estimation of stratiform rainfall. J. Hydrometeor., 3 , 166180.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. Parent-du-Chatelet, 2007: A fuzzy logic algorithm for the separation of precipitating from non-precipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24 , 14391451.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43 , 18341853.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K-L. Hsu, S. Sorooshian, and X. Gao, 2005: Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch–based rainfall estimation at small scales. Water Resour. Res., 41 , W03008. doi:10.1029/2004WR003142.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K-L. Hsu, H. Moradkhani, and S. Sorooshian, 2006: Uncertainty quantification of satellite rainfall estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42 , W08421. doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., D. Gochis, J. T. Chen, K-L. Hsu, and S. Sorooshian, 2007: Evaluation of Precipitation Estimation from Remote Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS) rainfall measurement using the NAME event rain gauge network. J. Hydrometeor., 8 , 469482.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and G. J. Huffman, 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9 , 563575.

    • Search Google Scholar
    • Export Citation
  • Hsu, K-L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2009: The TRMM Multisatellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer Verlag, 3–22.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1990: Precipitation measurements and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Search Google Scholar
    • Export Citation
  • Kincer, J. B., 1916: Daytime and nighttime precipitation and their economic significance. Mon. Wea. Rev., 44 , 628633.

  • Legates, D. R., and T. L. DeLiberty, 1993: Precipitation measurement biases in the United States. Water Resour. Bull., 29 , 855861.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61 , 13741387.

  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17 , 927934.

    • Search Google Scholar
    • Export Citation
  • Marselek, J., 1981: Calibration of the tipping-bucket raingage. J. Hydrol., 53 , 343354.

  • Nystuen, J. A., 1999: Relative performance of automatic rain gauges under different rainfall conditions. J. Atmos. Oceanic Technol., 16 , 10251043.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18 , 10371051.

    • Search Google Scholar
    • Export Citation
  • Seo, D-J., 1998: Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol., 208 , 3752.

  • Sorooshian, S., K-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: An evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., T. L. Bell, Y. Zhang, and E. F. Wood, 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Climate, 16 , 37593778.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and S. D. Miller, 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88 , 18991911.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60 , 10481058.

  • Zawadzki, I. I., 1975: On radar-raingauge comparison. J. Appl. Meteor., 14 , 14301436.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 148 17
PDF Downloads 192 68 6