Verification of the First 11 Years of IRI’s Seasonal Climate Forecasts

Anthony G. Barnston International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
,
Shuhua Li International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Shuhua Li in
Current site
Google Scholar
PubMed
Close
,
Simon J. Mason International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Simon J. Mason in
Current site
Google Scholar
PubMed
Close
,
David G. DeWitt International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by David G. DeWitt in
Current site
Google Scholar
PubMed
Close
,
Lisa Goddard International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Lisa Goddard in
Current site
Google Scholar
PubMed
Close
, and
Xiaofeng Gong International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Xiaofeng Gong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the quality of seasonal probabilistic forecasts of near-global temperature and precipitation issued by the International Research Institute for Climate and Society (IRI) from late 1997 through 2008, using mainly a two-tiered multimodel dynamical prediction system. Skill levels, while modest when globally averaged, depend markedly on season and location and average higher in the tropics than extratropics. To first order, seasons and regions of useful skill correspond to known direct effects as well as remote teleconnections from anomalies of tropical sea surface temperature in the Pacific Ocean (e.g., ENSO related) and in other tropical basins. This result is consistent with previous skill assessments by IRI and others and suggests skill levels beneficial to informed clients making climate risk management decisions for specific applications. Skill levels for temperature are generally higher, and less seasonally and regionally dependent, than those for precipitation, partly because of correct forecasts of enhanced probabilities for above-normal temperatures associated with warming trends. However, underforecasting of above-normal temperatures suggests that the dynamical forecast system could be improved through inclusion of time-varying greenhouse gas concentrations. Skills of the objective multimodel probability forecasts, used as the primary basis for the final forecaster-modified issued forecasts, are comparable to those of the final forecasts, but their probabilistic reliability is somewhat weaker. Automated recalibration of the multimodel output should permit improvements to their reliability, allowing them to be issued as is. IRI is currently developing single-tier prediction components.

* Current affiliation: Swiss Re Financial Services Corporation, New York, New York

Corresponding author address: Anthony G. Barnston, International Research Institute for Climate and Society, 61 Route 9W, P.O. Box 1000, Columbia University, Palisades, NY 10964-8000. Email: tonyb@iri.columbia.edu

Abstract

This paper examines the quality of seasonal probabilistic forecasts of near-global temperature and precipitation issued by the International Research Institute for Climate and Society (IRI) from late 1997 through 2008, using mainly a two-tiered multimodel dynamical prediction system. Skill levels, while modest when globally averaged, depend markedly on season and location and average higher in the tropics than extratropics. To first order, seasons and regions of useful skill correspond to known direct effects as well as remote teleconnections from anomalies of tropical sea surface temperature in the Pacific Ocean (e.g., ENSO related) and in other tropical basins. This result is consistent with previous skill assessments by IRI and others and suggests skill levels beneficial to informed clients making climate risk management decisions for specific applications. Skill levels for temperature are generally higher, and less seasonally and regionally dependent, than those for precipitation, partly because of correct forecasts of enhanced probabilities for above-normal temperatures associated with warming trends. However, underforecasting of above-normal temperatures suggests that the dynamical forecast system could be improved through inclusion of time-varying greenhouse gas concentrations. Skills of the objective multimodel probability forecasts, used as the primary basis for the final forecaster-modified issued forecasts, are comparable to those of the final forecasts, but their probabilistic reliability is somewhat weaker. Automated recalibration of the multimodel output should permit improvements to their reliability, allowing them to be issued as is. IRI is currently developing single-tier prediction components.

* Current affiliation: Swiss Re Financial Services Corporation, New York, New York

Corresponding author address: Anthony G. Barnston, International Research Institute for Climate and Society, 61 Route 9W, P.O. Box 1000, Columbia University, Palisades, NY 10964-8000. Email: tonyb@iri.columbia.edu

Save
  • Aldrich, J., 1997: R. A. Fisher and the making of maximum likelihood 1912–1922. Stat. Sci., 12 , 162176.

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: Atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA/TM-2000-104505, Vol. 17, 194 pp.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115 , 18251850.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., 1992: Correspondence among the correlation, RMSE, and Heidke forecast verification measures: Refinement of the Heidke score. Wea. Forecasting, 7 , 699709.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35 , 367383.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., S. J. Mason, L. Goddard, D. G. DeWitt, and S. E. Zebiak, 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84 , 17831796.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., U. Schlese, E. Roeckner, M. Latif, T. P. Barnett, and N. E. Graham, 1993: A two-tiered approach to long-range climate forecasting. Science, 261 , 10271029.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89 , 11111125.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78 , 13.

  • Brocker, J., and L. A. Smith, 2007: Scoring probabilistic forecasts: The importance of being proper. Wea. Forecasting, 22 , 382388.

  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Climate, 19 , 51225174.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and M. A. Cane, 2008: El Niño prediction and predictability. J. Comput. Phys., 227 , 36253640.

  • Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428 , 733735.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Deutsches Klimarechenzentrum, 1992: The ECHAM-3 atmospheric general circulation model. Tech. Rep. 6, 189 pp. [Available from the Modellbetruungsgruppe, Deutsches desstr. 55, Hamburg D-20146, Germany].

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, T. N. Palmer, and J. J. Morcrette, 2006: Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys. Res. Lett., 33 , L07708. doi:10.1029/2005GL025061.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. Mestas-Nuñez, D. A. Mayer, and S. L. Cid, 1999: How ubiquitous is the dipole relationship in the tropical Atlantic sea surface temperatures? J. Geophys. Res., 104 , (C4). 78417848.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8 , 985987.

  • Furrer, R., R. Knutti, S. R. Sain, D. W. Nychka, and G. A. Meehl, 2007: Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett., 34 , L06711. doi:10.1029/2006GL027754.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Group, 2004: The new GFDL global atmosphere and land model (AM2-LM2): Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., 1968: Canonical correlation and its relationship to discriminant analysis and multiple regression. J. Atmos. Sci., 25 , 2331.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113 , D06104. doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. E. Graham, 1999: The importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104 , (D16). 1909919116.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and M. Dilley, 2005: El Niño: Catastrophe or opportunity. J. Climate, 18 , 651665.

  • Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol., 21 , 11111152.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. G. Barnston, and S. J. Mason, 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84 , 17611781.

    • Search Google Scholar
    • Export Citation
  • Gong, X., A. G. Barnston, and M. N. Ward, 2003: The effect of spatial aggregation on the skill of seasonal precipitation forecasts. J. Climate, 16 , 30593071.

    • Search Google Scholar
    • Export Citation
  • Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw, and R. T. H. Barnes, 2005: A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus, 57A , 320339.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19 , 43264343.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. T. Kiehl, and J. W. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the NCAR CCM3. J. Climate, 11 , 11791206.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., and L. A. Smith, 2008: Communicating the value of probabilistic forecasts with weather roulette. Meteor. Appl., 16 , 143155. doi:10.1002/met.92.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5 , 577593.

    • Search Google Scholar
    • Export Citation
  • Hsu, W-R., and A. H. Murphy, 1986: The attributes diagram: A geometric framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2 , 285293.

    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. Van den Dool, and A. G. Barnston, 1996: Long-lead seasonal temperature prediction using optimal climate normals. J. Climate, 9 , 809817.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, B. A. Boville, D. L. Williamson, and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model version 3 (CCM3). J. Climate, 11 , 12071236.

    • Search Google Scholar
    • Export Citation
  • Ji, M., D. W. Behringer, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev., 126 , 10221034.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and K. C. Mo, 2003: Dynamical effect of land surface processes on summer precipitation over the southwestern United States. J. Climate, 16 , 496509.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical season forecast system 2000. Bull. Amer. Meteor. Soc., 83 , 10191037.

  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15 , 793799.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., I. S. Kang, and D. H. Choi, 2008: Seasonal climate predictability with tier-one and tier-two prediction systems. Climate Dyn., 31 , 403416.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16 , 13911403.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. P. Hoerling, M. Ji, A. Leetmaa, and P. Sardeshmukh, 1996: Assessing a GCM’s suitability for making seasonal forecasts. J. Climate, 9 , 115129.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., W. Wang, M. P. Hoerling, A. Leetmaa, and M. Ji, 2001: The sustained North American warming of 1997 and 1998. J. Climate, 14 , 345353.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, Q. Zhang, and L. Bounoua, 2007: A new methodology for estimating the unpredictable component of seasonal atmospheric variability. J. Climate, 20 , 38883901.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Anderson, P. Chang, and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19 , 59495970.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., and L. Goddard, 2002: Statistical recalibration of GCM forecasts over southern Africa using model output statistics. J. Climate, 15 , 20382055.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of atmospheric bridge in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Li, S., L. Goddard, and D. G. DeWitt, 2008: Predictive skill of AGCM seasonal climate forecasts subject to different SST prediction methodologies. J. Climate, 21 , 21692186.

    • Search Google Scholar
    • Export Citation
  • Liniger, M. A., H. Mathis, C. Appenzeller, and F. J. Doblas-Reyes, 2007: Realistic greenhouse gas forcing and seasonal forecasts. Geophys. Res. Lett., 34 , L04705.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W-Y. Chen, 1983: Field significance and its determination by Monte-Carlo techniques. Mon. Wea. Rev., 111 , 4659.

  • Livezey, R. E., and M. M. Timofeyeva, 2008: The first decade of long-lead U.S. seasonal forecasts—Insights from a skill analysis. Bull. Amer. Meteor. Soc., 89 , 843854.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., M. Masutani, and M. Ji, 1996: SST-forced seasonal simulation and prediction skill for versions of the NCEP/MRF model. Bull. Amer. Meteor. Soc., 77 , 507517.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., K. Y. Vinnikov, M. M. Timofeyeva, R. Tinker, and H. M. Van den Dool, 2007: Estimation and extrapolation of climate normals and climatic trends. J. Appl. Meteor. Climatol., 46 , 17591776.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30 , 291303.

  • Mason, S. J., 2004: On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev., 132 , 18911895.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and L. Goddard, 2001: Probabilistic precipitation anomalies associated with ENSO. Bull. Amer. Meteor. Soc., 82 , 619638.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and G. M. Mimmack, 2002: Comparison of some statistical methods of probabilistic forecasting of ENSO. J. Climate, 15 , 829.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and A. P. Weigel, 2009: A generic forecast verification framework for administrative purposes. Mon. Wea. Rev., 137 , 331349.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80 , 18531873.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90 , 459480.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12 , 595600.

  • Murphy, A. H., and E. S. Epstein, 1967: A note on probability forecasts and “hedging”. J. Appl. Meteor., 6 , 10021004.

  • Ndiaye, O., L. Goddard, and M. N. Ward, 2009: Using regional wind fields to improve general circulation model forecasts of July–September Sahel rainfall. Int. J. Climatol., 29 , 12621275.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. D. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of a 1901–96 monthly grid of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., D. A. Unger, M. S. Halpert, and K. S. Pelman, 2008: Developments in operational long-range climate prediction at CPC. Wea. Forecasting, 23 , 496515.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Pegion, P. J., S. D. Schubert, and M. J. Suarez, 2000: An assessment of the predictability of northern winter seasonal means with the NSIPP 1 AGCM. NASA/TM-2000-104505, Vol. 18, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, A. G. Barnston, and L. Goddard, 2000: Simulation skills of the SST-forced global climate variability of the NCEP–MRF9 and the Scripps–MPI ECHAM3 models. J. Climate, 13 , 36573679.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Search Google Scholar
    • Export Citation
  • Repelli, C. A., and P. Nobre, 2004: Statistical prediction of sea-surface temperature over the tropical Atlantic. Int. J. Climatol., 24 , 4555.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132 , 27322744.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Max Planck Institute for Meteorology Rep. 93, Hamburg, Germany, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation pattern associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9 , 10431059.

  • Ropelewski, C. F., J. E. Janowiak, and M. S. Halpert, 1985: The analysis and display of real time surface climate data. Mon. Wea. Rev., 113 , 11011106.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2002: Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev., 130 , 16531660.

  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19 , 34833517.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Schmid, C., R. L. Molinari, R. Sabina, Y. H. Daneshzadeh, X. D. Xia, E. Forteza, and H. Q. Yang, 2007: The real-time data management system for Argo profiling float observations. J. Atmos. Oceanic Technol., 24 , 16081628.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 2002: Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15 , 449469.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, M. A. Kistler, and A. Kumar, 2002: Predictability of zonal means during boreal summer. J. Climate, 15 , 420434.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26 , 485488.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and J. L. Kinter III, 2006: Predictability of seasonal climate variations: A pedagogical view. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 306–341.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., M. A. Balmaseda, and A. Vidard, 2006: Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs. J. Climate, 19 , 60476061.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Hychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18 , 15241540.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., and A. G. Barnston, 2008: Skill of multimodel ENSO probability forecasts. Mon. Wea. Rev., 136 , 39333946.

  • Tippett, M. K., M. Barlow, and B. Lyon, 2003: Statistical correction of central southwest Asia winter precipitation simulations. Int. J. Climatol., 23 , 14211433.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and A. W. Roberson, 2007: Estimation of seasonal precipitation tercile-based categorical probabilities from ensembles. J. Climate, 20 , 22102228.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 1994: Searching for analogues, how long must we wait? Tellus, 46A , 314324.

  • Van den Dool, H. M., 2007: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 215 pp.

  • Van den Dool, H. M., H. J. Huang, and Y. Fan, 2003: Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res., 108 , 8617. doi:10.1029/2002JD003114.

    • Search Google Scholar
    • Export Citation
  • Wang, G., O. Alves, D. Hudson, H. Hendon, G. Liu, and F. Tseitkin, 2008: SST skill assessment from the new POAMA-1.5 system. BMRC Research Letter 8, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Ward, N. M., and C. K. Folland, 1991: Prediction of seasonal rainfall in the north Nordeste of Brazil using eigenvectors of sea-surface temperatures. Int. J. Climatol., 11 , 711743.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007a: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135 , 118124.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007b: Generalization of the discrete Brier and ranked probability skill scores for weighted multimodel ensemble forecasts. Mon. Wea. Rev., 135 , 27782785.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2000: Diagnostic verification of the Climate Prediction Center long-lead outlooks, 1995–98. J. Climate, 13 , 23892403.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Wilks, D. S., and C. M. Godfrey, 2002: Diagnostic verification of the IRI net assessment forecasts, 1997–2000. J. Climate, 15 , 13691377.

    • Search Google Scholar
    • Export Citation
  • Winkler, R. L., and A. H. Murphy, 1968: “Good” probability assessors. J. Appl. Meteor., 7 , 751758.

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimations, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671586.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 911 413 123
PDF Downloads 449 143 16