Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields

John R. Mecikalski Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by John R. Mecikalski in
Current site
Google Scholar
PubMed
Close
,
Wayne M. MacKenzie Jr. Earth Systems Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Wayne M. MacKenzie Jr. in
Current site
Google Scholar
PubMed
Close
,
Marianne Koenig European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Marianne Koenig in
Current site
Google Scholar
PubMed
Close
, and
Sam Muller Jupiter’s Call, LLC, Madison, Alabama

Search for other papers by Sam Muller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Infrared (IR) data from the Meteosat Second Generation (MSG) satellite are used to understand cloud-top signatures for growing cumulus clouds prior to known convective initiation (CI) events, or the first occurrence of a ≥35-dBZ echo from a new convective cloud. In the process, this study proposes how MSG IR fields may be used to infer three physical attributes of growing cumuli, cloud depth, cloud-top glaciation, and updraft strength, with limited information redundancy. These three aspects are observed as unique signatures within MSG IR data, for which this study seeks to relate to previous research, as well as develop a new understanding on which subset of IR information best identifies these attributes. Data from 123 subjectively identified CI events observed during the 2007 Convection and Orograpically Induced Precipitation Study (COPS) field experiment conducted over southern Germany and northeastern France are processed, per convective cell, to meet this study’s objectives. A total of 67 IR “interest fields” are initially assessed for growing cumulus clouds, with correlation and principal component analyses used to highlight the top 21 fields that are considered the best candidates for describing the three attributes. Using between 6 and 8 fields per category, a method is then proposed on how growing convective clouds may be quantified per 3-km2 pixel (or per cumulus cloud object) toward inferring each attribute. No independent CI-nowcasting analysis is performed, which instead is the subject of ongoing research.

Corresponding author address: John R. Mecikalski, Atmospheric Science Dept., University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Abstract

Infrared (IR) data from the Meteosat Second Generation (MSG) satellite are used to understand cloud-top signatures for growing cumulus clouds prior to known convective initiation (CI) events, or the first occurrence of a ≥35-dBZ echo from a new convective cloud. In the process, this study proposes how MSG IR fields may be used to infer three physical attributes of growing cumuli, cloud depth, cloud-top glaciation, and updraft strength, with limited information redundancy. These three aspects are observed as unique signatures within MSG IR data, for which this study seeks to relate to previous research, as well as develop a new understanding on which subset of IR information best identifies these attributes. Data from 123 subjectively identified CI events observed during the 2007 Convection and Orograpically Induced Precipitation Study (COPS) field experiment conducted over southern Germany and northeastern France are processed, per convective cell, to meet this study’s objectives. A total of 67 IR “interest fields” are initially assessed for growing cumulus clouds, with correlation and principal component analyses used to highlight the top 21 fields that are considered the best candidates for describing the three attributes. Using between 6 and 8 fields per category, a method is then proposed on how growing convective clouds may be quantified per 3-km2 pixel (or per cumulus cloud object) toward inferring each attribute. No independent CI-nowcasting analysis is performed, which instead is the subject of ongoing research.

Corresponding author address: John R. Mecikalski, Atmospheric Science Dept., University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805-1912. Email: john.mecikalski@nsstc.uah.edu

Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53 , 28032812.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., R. A. Frey, and W. L. Smith, 1992: Radiation budget studies using collocated observations from AVHRR, HIRS/2, and ERBE instruments. J. Geophys. Res., 97 , 1151311525.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and D. D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18 , 502517.

  • Adler, R. F., M. J. Markus, and D. D. Fenn, 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113 , 769781.

    • Search Google Scholar
    • Export Citation
  • Balaji, V., and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45 , 31883211.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., and J. D. Spinhirne, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlap. J. Geophys. Res., 105 , (D9). 1179311804.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., V. Tovinkere, J. Titlow, and R. M. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36 , 15191540.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., D. P. Kratz, P. Yang, S. Ou, Y. Hu, P. F. Soulen, and S-C. Tsay, 2000a: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 1. Data and models. J. Geophys. Res., 105 , (D9). 1176711780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000b: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 2. Cloud thermodynamic phase. J. Geophys. Res., 105 , (D5). 1178111792.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., K. S. Kuo, A. M. Logar, E. M. Corwin, R. M. Welch, B. A. Baum, A. Pretre, and R. C. Weger, 1999: A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using AVHRR imagery. J. Geophys. Res., 104 , (D6). 61996213.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. Mackenzie, K. M. Bedka, and U. S. Nair, 2008: Convective cloud detection in satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113 , D20207. doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bethwaite, F. D., E. J. Smith, J. A. Warburton, and H. Heffernan, 1966: Effects of seeding isolated cumulus clouds with silver iodide. J. Appl. Meteor., 5 , 513520.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. A. Petersen, and D. J. Cecil, 2005: The tropical convective spectrum. Part I: Archetypal vertical structures. J. Climate, 18 , 27442769.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1982: Nowcasting. Academic Press. 256 pp.

  • Browning, K. A., and D. Atlas, 1965: Initiation of precipitation in vigorous convective clouds. J. Atmos. Sci., 22 , 678683.

  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22 , 853872.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10 , 606619.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 2004: Impact of volcanic ash detection caused by the loss of the 12 μm “split window” band on GOES-M imagers. J. Volcanol. Geotherm. Res., 135 , (1–2). 91103.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2007: MSG Level 1.5 image data format description. Document number EUM/MSG/ICD/105, 122 pp. [Available online at http://www.eumetsat.int/groups/ops/documents/document/pdf_ten_05105_msg_img_data.pdf].

    • Search Google Scholar
    • Export Citation
  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105 , (D11). 1474714759.

    • Search Google Scholar
    • Export Citation
  • Han, L., Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26 , 719732.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. Ackerman, P. Antonelli, F. Nagle, R. O. Knuteson, M. McGill, D. L. Hlavka, and W. D. Hart, 2006: An improvement to the high-spectral-resolution CO2-slicing cloud-top altitude retrieval. J. Atmos. Oceanic Technol., 23 , 653670.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987a: A cloud type classification with NOAA-7 split-window measurements. J. Geophys. Res., 92 , (D4). 39914000.

  • Inoue, T., 1987b: An instantaneous delineation of convective rainfall area using split window data of NOAA-7 AVHRR. J. Meteor. Soc. Japan, 65 , 469481.

    • Search Google Scholar
    • Export Citation
  • Jacobs, A. J. M., and N. Maat, 2005: Numerical guidance methods for decision support in aviation meteorological forecasting. Wea. Forecasting, 20 , 82100.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. A., and D. W. Wichern, 2002: Applied Multivariate Statistical Analysis. 5th ed. Prentice Hall, 767 pp.

  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8 , 67396753.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53 , 361369.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. Zhang, and D-L. Zhang, 2006: Thermodynamic, cloud microphysics, and rainfall responses to initial moisture perturbations in the tropical deep convective regime. J. Geophys. Res., 111 , D14207. doi:10.1029/2005JD006968.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek, 2006: GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Wea. Rev., 134 , 23422353.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111 , 887894.

  • Mecikalski, J. R., and K. M. Bedka, 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134 , 4978.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convective initiation, in-flight icing, turbulence and volcanic ash. Bull. Amer. Meteor. Soc., 88 , 15891607.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for predicting convective initiation. Mon. Wea. Rev., 136 , 48994914.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, and D. G. Gray, 1998: Application of GOES 8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79 , 20592077.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8 , 132146.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR auto-nowcast system. Wea. Forecasting, 18 , 545561.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., R. C. Weger, K. S. Kuo, and R. M. Welch, 1998: Clustering, randomness, and regularity in cloud fields 5. The nature of regular cumulus cloud fields. J. Geophys. Res., 103 , 1136311380.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., W. F. Feltz, A. K. Heidinger, and G. M. Gallina, 2006: A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J. Atmos. Oceanic Technol., 23 , 14221444.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1989: Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens., 10 , 751761.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104 , 14741483.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed. Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T., P. Kucera, M. Gentry, L. Carey, A. Lare, R. F. Lin, B. Demoz, and D. O. Starr, 2008: The relationship between anvil clouds and convective cells: A case study in South Florida during CRYSTAL-FACE. Mon. Wea. Rev., 136 , 39173932.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18 , 562584.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113 , D04208. doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Rozumalski, R. A., 2000: A quantitative assessment of the NESDIS auto-estimator. Wea. Forecasting, 15 , 397415.

  • Sadler, J. C., and B. Kilonsky, 1985: Deriving surface winds from satellite observations of low-level cloud motions. J. Climate Appl. Meteor., 24 , 758769.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19 , 433441.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83 , 977992.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: High spectral- and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26 , 22732292.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., 1987: The NESDIS operational convective precipitation technique. Mon. Wea. Rev., 115 , 17731792.

  • Setvák, M., R. M. Rabin, C. A. Doswell, and V. Levizzani, 2003: Satellite observations of convective storm top features in the 1.6 and 3.7/3.9 μm spectral bands. Atmos. Res., 67–68C , 589605.

    • Search Google Scholar
    • Export Citation
  • Siewert, C. W., M. Koenig, and J. R. Mecikalski, 2010: Application of Meteosat Second Generation data towards improving the nowcasting of convective initiation. Meteor. Appl., in press.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12 μm data. J. Appl. Meteor., 33 , 212229.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78 , 173195.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134 , 522.

  • Williams, E., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76 , 288306.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79 , 20792099.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., E. E. Ebert, T. R. Saxen, R. D. Roberts, C. K. Mueller, M. Sleigh, C. E. Pierce, and A. Seed, 2004: Sydney 2000 forecast demonstration project: Convective storm nowcasting. Wea. Forecasting, 19 , 131150.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., and D. A. Clark, 2006: Advanced aviation weather forecasts. MIT Lincoln Lab. J., 16 .[Available online at http://www.ll.mit.edu/publications/journal/pdf/vol16_no1/16_1_3Wolfson.pdf].

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: RESEARCH CAMPAIGN: The Convective and Orographically Induced Precipitation Study. Bull. Amer. Meteor. Soc., 89 , 14771486.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21 , 149166.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125 , 10011026.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101 , 191210.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2065 1252 36
PDF Downloads 806 150 10