Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates

Rémy Roca Laboratoire de Météorologie Dynamique, IPSL/CNRS, Paris, France

Search for other papers by Rémy Roca in
Current site
Google Scholar
PubMed
Close
,
Philippe Chambon Laboratoire de Météorologie Dynamique, IPSL/CNRS, Palaiseau, France

Search for other papers by Philippe Chambon in
Current site
Google Scholar
PubMed
Close
,
Isabelle Jobard Laboratoire de Météorologie Dynamique, IPSL/CNRS, Palaiseau, France

Search for other papers by Isabelle Jobard in
Current site
Google Scholar
PubMed
Close
,
Pierre-Emmanuel Kirstetter Laboratoire ATMOS, IPSL/CNRS, Vélizy, France

Search for other papers by Pierre-Emmanuel Kirstetter in
Current site
Google Scholar
PubMed
Close
,
Marielle Gosset Laboratoire d’étude des Transferts en Hydrologie et Environnement, Grenoble, France

Search for other papers by Marielle Gosset in
Current site
Google Scholar
PubMed
Close
, and
Jean Claude Bergès PRODIG, Université Paris 1, Paris, France

Search for other papers by Jean Claude Bergès in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteorological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data are computed using dedicated techniques that come down to an estimation of the sampling errors associated to these measurements. The results show that the new generation of combined infrared–microwave (IR–MW) satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.

Corresponding author address: Dr. Rémy Roca, Laboratoire de Météorologie Dynamique, Tour 45-55, 3ème étage, Case Postale 99, 4 place Jussieu, 75252 Paris, CEDEX 05, France. Email: roca@lmd.jussieu.fr

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

Monsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteorological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data are computed using dedicated techniques that come down to an estimation of the sampling errors associated to these measurements. The results show that the new generation of combined infrared–microwave (IR–MW) satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.

Corresponding author address: Dr. Rémy Roca, Laboratoire de Météorologie Dynamique, Tour 45-55, 3ème étage, Case Postale 99, 4 place Jussieu, 75252 Paris, CEDEX 05, France. Email: roca@lmd.jussieu.fr

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Ali, A., and T. Lebel, 2008: The Sahelian standardized rainfall index revisited. Int. J. Climatol., 29 , 17051714. doi:10.1002/joc.1832.

    • Search Google Scholar
    • Export Citation
  • Ali, A., T. Lebel, and A. Amani, 2005a: Rainfall estimation in the Sahel. Part I: Error function. J. Appl. Meteor., 44 , 16911706.

  • Ali, A., A. Amani, A. Diedhiou, and T. Lebel, 2005b: Rainfall estimation in the Sahel. Part II: Evaluation of rain gauge networks in the CILSS countries and objective intercomparison of rainfall products. J. Appl. Meteor., 44 , 17071722.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and G. Liu, 2000: Passive microwave precipitation retrievals using TMI during the Baiu period of 1998. Part I: Algorithm description and validation. J. Appl. Meteor., 39 , 20242037.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and P. K. Kundu, 2003: Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model. J. Geophys. Res., 108 , 4121. doi:10.1029/2002JD002641.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., A. Abdullah, R. L. Martin, and G. R. North, 1990: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space-time stochastic model. J. Geophys. Res., 95 , 21952205.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T. J., and J. Sun, 2005: Probabilistic and ensemble representations of the uncertainty of the IR/microwave satellite precipitation product. J. Appl. Meteor., 6 , 10321044.

    • Search Google Scholar
    • Export Citation
  • Bergès, J. C., F. Chopin, I. Jobard, and R. Roca, 2010: EPSAT-SG: A satellite method for precipitation estimation; its concept and implementation for AMMA experiment. Ann. Geophys., 28 , 289308.

    • Search Google Scholar
    • Export Citation
  • Berne, A., G. Delrieu, J. D. Creutin, and C. Obled, 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299 , 166179.

    • Search Google Scholar
    • Export Citation
  • Bielli, S., and R. Roca, 2009: Scale decomposition of atmospheric water budget over West Africa during the monsoon 2006 from NCEP/GFS analyses. Climate Dyn., doi:10.1007/s00382-009-0597-5.

    • Search Google Scholar
    • Export Citation
  • Carroll, R. J., and D. Ruppert, 1996: The use and misuse of orthogonal regression estimation in linear errors-in-variables models. Amer. Stat., 50 , 16.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Ciach, G. J., and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Res., 22 , 585595.

  • Conway, D., A. Persechino, S. Ardoin-Bardin, H. Hamandawana, C. Dieulin, and G. Mahé, 2009: Rainfall and water resources variability in sub-Saharan Africa during the twentieth century. J. Hydrometeor., 10 , 4159.

    • Search Google Scholar
    • Export Citation
  • Depraetere, C., M. Gosset, S. Ploix, and H. Laurent, 2009: The organization and kinematics of tropical rainfall systems ground tracked at mesoscale with gages: First results from the campaigns 1999–2006 on the Upper Ouémé Valley (Benin). J. Hydrol., 375 , 143160. doi:10.1016/j.jhydrol.2009.01.011.

    • Search Google Scholar
    • Export Citation
  • Desbois, M., T. Kayiranga, B. Gnamien, S. Guessous, and L. Picon, 1988: Characterization of some elements of the Sahelian climate and their interannual variations for July 1983, 1984 and 1985 from the analysis of METEOSAT ISCCP data. J. Climate, 1 , 867904.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2007: Methods for verifying satellite precipitation estimates. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 345–356.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and M. J. Manton, 1998: Performance of satellite rainfall estimation algorithms during TOGA COARE. J. Atmos. Sci., 55 , 15371557.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, G. E. Holpin, and A. Gruber, 1996: Results from the GPCP algorithm intercomparison projects. Bull. Amer. Meteor. Soc., 77 , 28752887.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108 , 4332. doi:10.1029/2002JD002816.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and W. F. Krajewski, 2004: Characterization of the temporal sampling error in space-time-averaged rainfall estimates from satellites. J. Geophys. Res., 109 , D11110. doi:10.1029/2004JD004509.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., and W. F. Krajewski, 2005: Modeling distribution of temporal sampling errors in area-time-averaged rainfall estimates. Atmos. Res., 73 , 243259.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. Biasutti, I. M. Held, and A. H. Sobel, 2008a: A global perspective on African climate. Climatic Change, 90 , 359383. doi:10.1007/s10584-008-9396-y.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., M. Biasutti, and M. M. Verstraete, 2008b: A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Global Planet. Change, 64 , 119128. doi:10.1016/j.gloplacha.2008.05.004.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., E. Pardo, and R. Bonifacio, 1999: Optimal areal rainfall estimation using raingauges and satellite data. J. Hydrol., 222 , 93108.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and R. F. Adler, 2004: Seasonal evolution and variability associated with the West African monsoon system. J. Climate, 17 , 33643377.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2003: Summer synoptic-scale waves over West Africa observed by TRMM. Geophys. Res. Lett., 30 , 1729. doi:10.1029/2003GL017402.

    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket raingauge measurements. J. Hydrol. Eng., 6 , 159166.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1991: Climate Dynamics of the Tropics. Springer, 488 pp.

  • Herman, A., V. B. Kumar, P. A. Arkin, and J. V. Kousky, 1997: Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens., 18 , 21472159.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., and G. J. Huffman, 2008: Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J. Hydrometeor., 9 , 563575.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., 1997: Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteor., 36 , 11911201.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrol., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., and Coauthors, 2008: Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006. Ann. Geophys., 26 , 25692595.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and A. T. Gaye, 2010: Increasing research opportunities in the atmospheric sciences for underrepresented groups through international field experiences in Senegal. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Jobard, I., and M. Desbois, 1994: Satellite estimation of the tropical precipitation using the Meteosat and SSM/I data. Atmos. Res., 34 , 285298.

    • Search Google Scholar
    • Export Citation
  • Jobard, I., F. Chopin, J. C. Bergès, and R. Roca, 2010: An intercomparison of 10-day precipitation satellite products during West African monsoon. Int. J. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Journel, A., and C. Huijbregts, 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Joyce, R., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kelly, B. C., 2007: Some aspects of measurement error in linear regression of astronomical data. Astrophys. J., 665 , 14891506.

  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63 , 22122230.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lamptey, B. L., 2008: Comparison of gridded multisatellite rainfall estimates with gridded gauge rainfall over West Africa. J. Appl. Meteor. Climatol., 47 , 185205.

    • Search Google Scholar
    • Export Citation
  • Larsen, R. J., and M. L. Marx, 2001: An Introduction to Mathematical Statistics and Its Applications. 3rd ed. Prentice Hall, 790 pp.

  • Laurent, H., I. Jobard, and A. Toma, 1998: Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res., 47–48 , 651670.

    • Search Google Scholar
    • Export Citation
  • Le Barbé, L., T. Lebel, and D. Tapsoba, 2002: Rainfall variability in West Africa during the years 1950–90. J. Climate, 15 , 187202.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and A. Amani, 1999: Rainfall estimation in the Sahel: What is the ground truth? J. Appl. Meteor., 38 , 555568.

  • Lebel, T., G. Bastin, C. Obled, and J. D. Creutin, 1987: On the accuracy of areal rainfall estimation: A case study. Water Resour. Res., 23 , 21232134.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol., 375 , 313. doi:10.1016/j.jhydrol.2009.03.020.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2010: The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Quart. J. Roy. Meteor. Soc., 136 , (Supp. S1). 833.

    • Search Google Scholar
    • Export Citation
  • Leng, L., T. Zhang, L. Kleinman, and W. Zhu, 2007: Ordinary least square regression, orthogonal regression, geometric mean regression and their application in aerosol science. J. Phys., 78 , 012084. doi:10.1088/1742-6596/78/1/012084.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., P. Bauer, and F. J. Turk, Eds. 2007: Measuring Precipitation from Space: EURAINSAT and the Future. Advances in Global Change Research, Vol. 28, Springer, 722 pp.

    • Search Google Scholar
    • Export Citation
  • Machado, L. T., J. P. Duvel, and M. Desbois, 1993: Diurnal variations and modulation by easterly waves of the size distribution of convective cloud clusters over West Africa and the Atlantic Ocean. Mon. Wea. Rev., 121 , 3749.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41 , 10811092.

  • Mohr, K. I., 2004: Interannual, monthly, and regional variability in the wet season diurnal cycle of precipitation in sub-Saharan Africa. J. Climate, 17 , 24412453.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31 , 20112017.

    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., E. J. Nelkin, R. F. Adler, G. J. Huffman, and C. Kummerow, 1995: Evaluation of passive microwave precipitation algorithms in wintertime midlatitude situations. J. Atmos. Oceanic Technol., 12 , 2032.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and C. D. Kummerow, 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, Precipitation Radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43 , 10161036.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003a: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42 , 13371354.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003b: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42 , 13551368.

    • Search Google Scholar
    • Export Citation
  • North, G. R., and S. Nakamoto, 1989: Formalism for comparing rain estimation designs. J. Atmos. Oceanic Technol., 6 , 985992.

  • Pardo-Igúzquiza, E., D. I. F. Grimes, and C-K. Teo, 2006: Assessing the uncertainty associated with intermittent rainfall fields. Water Resour. Res., 42 , W01412. doi:10.1029/2004WR003740.

    • Search Google Scholar
    • Export Citation
  • Peyrillé, P., and J. P. Lafore, 2007: An idealized two-dimensional framework to study the West African monsoon. Part II: Large-scale advection and the diurnal cycle. J. Atmos. Sci., 64 , 27832803.

    • Search Google Scholar
    • Export Citation
  • Peyrillé, P., J. P. Lafore, and J-L. Redelsperger, 2007: An idealized two-dimensional framework to study the West African monsoon. Part I: Validation and key controlling factors. J. Atmos. Sci., 64 , 27652782.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., A. Diongue, A. Diedhiou, J. P. Ceron, M. Diop, J-F. Gueremy, and J-P. Lafore, 2002: Multi-scale description of a Sahelian synoptic weather system representative of the West African monsoon. Quart. J. Roy. Meteor. Soc., 128 , 12291258.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87 , 17391746.

    • Search Google Scholar
    • Export Citation
  • Roca, R., J-P. Lafore, C. Piriou, and J-L. Redelsperger, 2005: Extratropical dry-air intrusions into the West African monsoon midtroposphere: An important factor for the convective activity over Sahel. J. Atmos. Sci., 62 , 390407.

    • Search Google Scholar
    • Export Citation
  • Roca, R., and Coauthors, 2010: On the water and energy cycles in the tropics. C. R. Geosci., in press.

  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10 , 149166.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16 , 34073427.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., S. Janicot, and A. Diedhiou, 2003: The west african monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16 , 33893406.

    • Search Google Scholar
    • Export Citation
  • Teo, C-K., and D. I. F. Grimes, 2007: Stochastic modelling of rainfall from satellite data. J. Hydrol, 346 , 3350.

  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A , 137151.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., C. Burlaud, and C. D. Kummerow, 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR–based database. J. Appl. Meteor. Climatol., 45 , 455466.

    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8 , 607626.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19 , 51905226.

    • Search Google Scholar
    • Export Citation
  • Zeweldi, D. A., and M. Gebremichael, 2009: Sub-daily scale validation of satellite-based high-resolution rainfall products. Atmos. Res., 92 , 427433. doi:10.1016/j.atmosres.2009.01.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 697 182 6
PDF Downloads 375 66 2