Scaling the Daytime Urban Heat Island and Urban-Breeze Circulation

Julia Hidalgo Environment Unit, LABEIN-Tecnalia, Derio, Spain

Search for other papers by Julia Hidalgo in
Current site
Google Scholar
PubMed
Close
,
Valéry Masson GAME/CNRM, Météo-France, CNRS, Toulouse, France

Search for other papers by Valéry Masson in
Current site
Google Scholar
PubMed
Close
, and
Luis Gimeno EphysLab, Vigo University, Ourense, Spain

Search for other papers by Luis Gimeno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The urban-breeze circulation is a mesoscale response of the atmospheric flow that is related to horizontal variations in temperature associated, for dry conditions, with gradients in sensible heat flux densities. This local circulation is difficult to observe with a simple observational deployment, and the 3D numerical simulations needed to model it are very demanding in computer time. A theoretical approach scaling the daytime urban heat island and urban-breeze characteristics has been developed and provides a simple set of equations that depend on measurable parameters. Three-dimensional high-resolution numerical simulations, performed with the Nonhydrostatic Mesoscale (Meso-NH) atmospheric model, were used to generate a set of urban-breeze circulations forced by an idealized urban environment. The pertinent forcing parameters chosen were the size of the city, the height of the thermal inversion topping the mixed turbulent air layer, and the difference (urban – rural) of surface heat flux. Scaling laws are presented that describe the shape of the urban heat island and the horizontal and vertical wind intensity and profiles.

Corresponding author address: Julia Hidalgo, Environment Unit, LABEIN-Tecnalia, C/Geldo - Parque Tecnológico de Bizkaia, Ed. 700, 48160, Spain. Email: jhidalgo@labein.es

Abstract

The urban-breeze circulation is a mesoscale response of the atmospheric flow that is related to horizontal variations in temperature associated, for dry conditions, with gradients in sensible heat flux densities. This local circulation is difficult to observe with a simple observational deployment, and the 3D numerical simulations needed to model it are very demanding in computer time. A theoretical approach scaling the daytime urban heat island and urban-breeze characteristics has been developed and provides a simple set of equations that depend on measurable parameters. Three-dimensional high-resolution numerical simulations, performed with the Nonhydrostatic Mesoscale (Meso-NH) atmospheric model, were used to generate a set of urban-breeze circulations forced by an idealized urban environment. The pertinent forcing parameters chosen were the size of the city, the height of the thermal inversion topping the mixed turbulent air layer, and the difference (urban – rural) of surface heat flux. Scaling laws are presented that describe the shape of the urban heat island and the horizontal and vertical wind intensity and profiles.

Corresponding author address: Julia Hidalgo, Environment Unit, LABEIN-Tecnalia, C/Geldo - Parque Tecnológico de Bizkaia, Ed. 700, 48160, Spain. Email: jhidalgo@labein.es

Save
  • Atkinson, B. W., 2002: Numerical modelling of urban heat-island intensity. Bound.-Layer Meteor., 109 , 285310.

  • Baik, J. J., 1992: Response of a stably stratified atmosphere to low-level heating—An application to the heat island problem. J. Appl. Meteor., 31 , 291303.

    • Search Google Scholar
    • Export Citation
  • Baik, J. J., and H. Chun, 1997: A dynamical model for urban heat islands. Bound.-Layer Meteor., 83 , 463477.

  • Baik, J. J., Y-H. Kim, and H-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteor., 40 , 14621475.

  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117 , 18721890.

    • Search Google Scholar
    • Export Citation
  • Buckingham, E., 1914: On physically similar systems: Illustrations of the use of dimensional equations. Phys. Rev., 4 (4) 345376.

  • Cenedese, A., and P. Monti, 2003: Interaction between an inland urban heat island and a sea-breeze flow: A laboratory study. J. Appl. Meteor., 42 , 15691583.

    • Search Google Scholar
    • Export Citation
  • Changnon Jr., S. A., Ed. 1981: METROMEX: A Review and Summary. Meteor. Monogr., No. 40, Amer. Meteor. Soc., 181 pp.

  • Cuxart, J., P. Bougeault, and J-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126 , 130.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27 , 12111213.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., G. Pigeon, and V. Masson, 2008a: Urban-breeze circulation during the CAPITOUL experiment: Experimental data analysis approach. Meteor. Atmos. Phys., 102 , 223241.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., V. Masson, and G. Pigeon, 2008b: Urban-breeze circulation during the CAPITOUL experiment: Numerical approach. Meteor. Atmos. Phys., 102 , 243262.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and F. T. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36 , 201209.

  • Kurbatskii, A., 2001: Computational modeling of the turbulent penetrative convection above the urban heat island in a stably stratified environment. J. Appl. Meteor., 40 , 17481761.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulation. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104 , 463490.

  • Lin, Y., 1987: Two-dimensional response of a stably stratified shear flow to diabatic heating. J. Atmos. Sci., 44 , 13751393.

  • Lin, Y., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43 , 4050.

  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson, 1997a: A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteor., 36 , 13771391.

    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson, 1997b: A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: Velocity field. J. Appl. Meteor., 36 , 13921402.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospherics models. Bound.-Layer Meteor., 94 , 357397.

  • Masson, V., and Coauthors, 2008: The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment. Meteor. Atmos. Phys., 102 , 135157.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108 , 124.

  • Oke, T. R., 1987: Boundary Layer Climates. Methuen, 435 pp.

  • Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28 , 13741388.

  • Porson, A., D. G. Steyn, and G. Schayes, 2007: Sea-breeze scaling from numerical model simulations, Part I: Pure sea breezes. Bound.-Layer Meteor., 29 , 1729.

    • Search Google Scholar
    • Export Citation
  • Richardone, R., and G. Brusasca, 1989: Numerical experiments on urban heat island intensity. Quart. J. Roy. Meteor. Soc., 115 , 983995.

    • Search Google Scholar
    • Export Citation
  • Shea, D. M., and A. H. Auer Jr., 1978: Thermodynamic properties and aeorosol patterns in the plume downwind of St. Louis. J. Appl. Meteor., 17 , 689698.

    • Search Google Scholar
    • Export Citation
  • Shreffler, J. H., 1978: Detection of centripetal heat-island circulation from tower data in St. Louis. Bound.-Layer Meteor., 15 , 229242.

    • Search Google Scholar
    • Export Citation
  • Shreffler, J. H., 1979: Heat island convergence in St. Louis during calm periods. J. Appl. Meteor., 18 , 15121520.

  • Steyn, D., 1998: Scaling the vertical structure of sea breeze. Bound.-Layer Meteor., 86 , 505524.

  • Stull, R., 1997: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 442 pp.

  • Vaschy, A., 1892: Sur les lois de similitude en physique (On the laws of similarity in physics). Ann. Télégr., 19 , 2528.

  • Vukovich, F. M., and J. W. Dunn, 1978: A theoretical study of the St. Louis heat island: Some parameter variations. J. Appl. Meteor., 17 , 15851594.

    • Search Google Scholar
    • Export Citation
  • Wong, K. K., and R. A. Dirks, 1978: Mesoscale perturbations on airflow in the urban mixing layer. J. Appl. Meteor., 17 , 677688.

  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor., 31 , 11461164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 796 328 27
PDF Downloads 581 192 16