Polarimetric Radar Rain Estimation through Retrieval of Drop Size Distribution Using a Bayesian Approach

Qing Cao Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Qing Cao in
Current site
Google Scholar
PubMed
Close
,
Guifu Zhang School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
,
Edward A. Brandes National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Edward A. Brandes in
Current site
Google Scholar
PubMed
Close
, and
Terry J. Schuur Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/NSSL, Norman, Oklahoma

Search for other papers by Terry J. Schuur in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study proposes a Bayesian approach to retrieve raindrop size distributions (DSDs) and to estimate rainfall rates from radar reflectivity in horizontal polarization ZH and differential reflectivity ZDR. With this approach, the authors apply a constrained-gamma model with an updated constraining relation to retrieve DSD parameters. Long-term DSD measurements made in central Oklahoma by the two-dimensional video disdrometer (2DVD) are first used to construct a prior probability density function (PDF) of DSD parameters, which are estimated using truncated gamma fits to the second, fourth, and sixth moments of the distributions. The forward models of ZH and ZDR are then developed based on a T-matrix calculation of raindrop backscattering amplitude with the assumption of drop shape. The conditional PDF of ZH and ZDR is assumed to be a bivariate normal function with appropriate standard deviations. The Bayesian algorithm has a good performance according to the evaluation with simulated ZH and ZDR. The algorithm is also tested on S-band radar data for a mesoscale convective system that passed over central Oklahoma on 13 May 2005. Retrievals of rainfall rates and 1-h rain accumulations are compared with in situ measurements from one 2DVD and six Oklahoma Mesonet rain gauges, located at distances of 28–54 km from Norman, Oklahoma. Results show that the rain estimates from the retrieval agree well with the in situ measurements, demonstrating the validity of the Bayesian retrieval algorithm.

Corresponding author address: Qing Cao, Atmospheric Radar Research Center, University of Oklahoma, 1200 David L. Boren Blvd., Suite 4638, Norman, OK 73072. Email: qingcao@ou.edu

Abstract

This study proposes a Bayesian approach to retrieve raindrop size distributions (DSDs) and to estimate rainfall rates from radar reflectivity in horizontal polarization ZH and differential reflectivity ZDR. With this approach, the authors apply a constrained-gamma model with an updated constraining relation to retrieve DSD parameters. Long-term DSD measurements made in central Oklahoma by the two-dimensional video disdrometer (2DVD) are first used to construct a prior probability density function (PDF) of DSD parameters, which are estimated using truncated gamma fits to the second, fourth, and sixth moments of the distributions. The forward models of ZH and ZDR are then developed based on a T-matrix calculation of raindrop backscattering amplitude with the assumption of drop shape. The conditional PDF of ZH and ZDR is assumed to be a bivariate normal function with appropriate standard deviations. The Bayesian algorithm has a good performance according to the evaluation with simulated ZH and ZDR. The algorithm is also tested on S-band radar data for a mesoscale convective system that passed over central Oklahoma on 13 May 2005. Retrievals of rainfall rates and 1-h rain accumulations are compared with in situ measurements from one 2DVD and six Oklahoma Mesonet rain gauges, located at distances of 28–54 km from Norman, Oklahoma. Results show that the rain estimates from the retrieval agree well with the in situ measurements, demonstrating the validity of the Bayesian retrieval algorithm.

Corresponding author address: Qing Cao, Atmospheric Radar Research Center, University of Oklahoma, 1200 David L. Boren Blvd., Suite 4638, Norman, OK 73072. Email: qingcao@ou.edu

Save
  • Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44 , 15091524.

  • Brandes, E. A., J. Vivekanandan, and J. W. Wilson, 1999: A comparison of radar reflectivity estimates of rainfall from collocated radars. J. Atmos. Oceanic Technol., 16 , 12641272.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42 , 652660.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21 , 584598.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43 , 461475.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2005: Corrigendum. J. Appl. Meteor., 44 , 186.

  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., and G. Zhang, 2009: Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra. J. Appl. Meteor. Climatol., 48 , 406425.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47 , 22382255.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, and M. Xue, cited. 2009: Variational retrieval of raindrop size distribution from polarimetric radar data in presence of attenuation. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_144407.htm].

    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., and G. W. Petty, 2006: Bayesian retrieval of complete posterior PDFs of oceanic rain rate from microwave observations. J. Appl. Meteor. Climatol., 45 , 10731095.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

  • Ciach, G. J., and W. F. Krajewski, 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Resour., 29 , 14501463.

    • Search Google Scholar
    • Export Citation
  • Di Michele, S., A. Tassa, A. Mugnai, F. S. Marzano, P. Bauer, and J. P. V. P. Baptista, 2005: Bayesian algorithm for microwave-based precipitation retrieval: Description and application to TMI measurements over ocean. IEEE Trans. Geosci. Remote Sens., 43 , 778791.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. Turk, T. Wong, and G. L. Stephens, 1995: A Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34 , 260279.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59 , 23732384.

    • Search Google Scholar
    • Export Citation
  • Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6 , 159166.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46 , 15441564.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

  • Lee, G., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23 , 10051028.

    • Search Google Scholar
    • Export Citation
  • Lee, G., and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44 , 241255.

    • Search Google Scholar
    • Export Citation
  • Lee, G., and I. Zawadzki, 2006: Radar calibration by gage, disdrometer, and polarimetry: Theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J. Hydrol., 328 , 8397.

    • Search Google Scholar
    • Export Citation
  • Lee, J. S., M. R. Grunes, and G. De Grandi, 1997: Polarimetric SAR speckle filtering and its impact on classification. Proc. IGARSS ‘97: Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, IEEE, Vol. 2, 1038–1040.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., K. F. Evans, and A. S. Ackerman, 2002: A Bayesian algorithm for the retrieval of liquid water cloud properties from microwave radiometer and millimeter radar data. J. Geophys. Res., 107 , 4317. doi:10.1029/2001JD001011.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 30, 237–258.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22 , 11381155.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4 , 588598.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40 , 10191034.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, P. L. Heinselman, D. S. Zrnić, D. W. Burgess, and K. A. Scharfenberg, 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. National Severe Storms Laboratory Rep., 46 pp. [Available online at http://publications.nssl.noaa.gov/wsr88d_reports/JPOLE_Obs_and_Classification_of_Echoes_Report.pdf].

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. V. Kliche, and R. W. Johnson, 2009: The bias and error in moment estimators for parameters of drop size distribution functions: Sampling from gamma distributions. J. Appl. Meteor. Climatol., 48 , 21182126.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61 , 11141131.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar rain estimators based on constrained gamma drop size distribution model. J. Appl. Meteor., 43 , 217230.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and G. Zhang, 2009: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data. Quart. J. Roy. Meteor. Soc., 135 , 14091423.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar. IEEE Trans. Geosci. Remote Sens., 39 , 830840.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. Brandes, R. Menegini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20 , 11061119.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63 , 12731290.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. J. Appl. Meteor. Climatol., 47 , 29832992.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 217 44
PDF Downloads 241 100 28