Discrimination of Mixed- versus Ice-Phase Clouds Using Dual-Polarization Radar with Application to Detection of Aircraft Icing Regions

David M. Plummer Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Sabine Göke Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Sabine Göke in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
, and
Larry Di Girolamo Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Larry Di Girolamo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dual-polarization radar measurements and in situ measurements of supercooled liquid water and ice particles within orographic cloud systems are used to develop probabilistic criteria for identifying mixed-phase versus ice-phase regions of sub-0°C clouds. The motivation for this study is the development of quantitative criteria for identification of potential aircraft icing conditions in clouds using polarization radar. The measurements were obtained during the Mesoscale Alpine Programme (MAP) with the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-Pol) and Electra aircraft. The comparison of the radar and aircraft measurements required the development of an automated algorithm to match radar and aircraft observations in time and space. This algorithm is described, and evaluations are presented to verify its accuracy. Three polarization radar parameters, the radar reflectivity factor at horizontal polarization (ZH), the differential reflectivity (ZDR), and the specific differential phase (KDP), are first separately shown to be statistically distinguishable between conditions in mixed- and ice-phase clouds, even when an estimate of measurement uncertainty is included. Probability distributions for discrimination of mixed-phase versus ice-phase clouds are then developed using the matched radar and aircraft measurements. The probability distributions correspond well to a basic physical understanding of ice particle growth by riming and vapor deposition, both of which may occur in mixed-phase conditions. To the extent that the probability distributions derived for the MAP orographic clouds can be applied to other cloud systems, they provide a simple tool for warning aircraft of the likelihood that supercooled water may be encountered in regions of clouds.

Corresponding author address: David M. Plummer, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: dplumme2@earth.uiuc.edu

Abstract

Dual-polarization radar measurements and in situ measurements of supercooled liquid water and ice particles within orographic cloud systems are used to develop probabilistic criteria for identifying mixed-phase versus ice-phase regions of sub-0°C clouds. The motivation for this study is the development of quantitative criteria for identification of potential aircraft icing conditions in clouds using polarization radar. The measurements were obtained during the Mesoscale Alpine Programme (MAP) with the National Center for Atmospheric Research S-band dual-polarization Doppler radar (S-Pol) and Electra aircraft. The comparison of the radar and aircraft measurements required the development of an automated algorithm to match radar and aircraft observations in time and space. This algorithm is described, and evaluations are presented to verify its accuracy. Three polarization radar parameters, the radar reflectivity factor at horizontal polarization (ZH), the differential reflectivity (ZDR), and the specific differential phase (KDP), are first separately shown to be statistically distinguishable between conditions in mixed- and ice-phase clouds, even when an estimate of measurement uncertainty is included. Probability distributions for discrimination of mixed-phase versus ice-phase clouds are then developed using the matched radar and aircraft measurements. The probability distributions correspond well to a basic physical understanding of ice particle growth by riming and vapor deposition, both of which may occur in mixed-phase conditions. To the extent that the probability distributions derived for the MAP orographic clouds can be applied to other cloud systems, they provide a simple tool for warning aircraft of the likelihood that supercooled water may be encountered in regions of clouds.

Corresponding author address: David M. Plummer, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: dplumme2@earth.uiuc.edu

Supplementary Materials

    • Supplemental Materials (DOC 876 KB)
Save
  • Baumgardner, D., and A. Rodi, 1989: Laboratory and wind tunnel evaluations of the Rosemount Icing Detector. J. Atmos. Oceanic Technol., 6 , 971979.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82 , 433462.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Weather Radar: Principles and Applications. 2nd ed. Cambridge University Press, 500 pp.

    • Search Google Scholar
    • Export Citation
  • Buzzi, A., M. D’Isidoro, and S. Davolio, 2003: A case-study of an orographic cyclone south of the Alps during the MAP SOP. Quart. J. Roy. Meteor. Soc., 129 , 17971818.

    • Search Google Scholar
    • Export Citation
  • Chiao, S., Y-L. Lin, and M. L. Kaplan, 2004: Numerical study of orographic forcing of heavy orographic precipitation during MAP-IOP-2B. Mon. Wea. Rev., 132 , 21842203.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., J. W. Strapp, and G. A. Isaac, 1996: An example of supercooled drizzle drops formed through a collision–coalescence process. J. Appl. Meteor., 35 , 22502260.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. V. Korolev, 2001a: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18 , 515528.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001b: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteor., 40 , 19842002.

    • Search Google Scholar
    • Export Citation
  • Cronce, M., R. M. Rauber, K. R. Knupp, B. F. Jewett, J. T. Walters, and D. Phillips, 2007: Vertical motions in precipitation bands in three winter cyclones. J. Appl. Meteor. Climatol., 46 , 15231543.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover, 562 pp.

  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37 , 3648.

  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, P. H. Kaye, E. Hirst, and R. Greenaway, 2004: Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale. Quart. J. Roy. Meteor. Soc., 130 , 18771904.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra-Nevada: A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27 , 9891015.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. F., L. Vardiman, R. E. Stewart, and A. Huggins, 1983: Supercooled liquid water and ice crystal distributions within Sierra Nevada winter storms. J. Climate Appl. Meteor., 22 , 18751886.

    • Search Google Scholar
    • Export Citation
  • Hesterberg, T. C., D. S. Moore, S. Monaghan, A. Clipson, and R. Epstein, 2005: Bootstrap methods and permutation tests. Introduction to the Practice of Statistics, 5th ed., D. S. Moore and G. P. McCabe, Eds., W. H. Freeman, 14.1–14.70.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1980: Seeding-opportunity recognition in winter orographic clouds. J. Appl. Meteor., 19 , 13711381.

  • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE98. Quart. J. Roy. Meteor. Soc., 129 , 20892116.

    • Search Google Scholar
    • Export Citation
  • Hollander, M., and D. A. Wolfe, 1999: Nonparametric Statistical Methods. 2nd ed. Wiley, 528 pp.

  • Houze Jr., R. A., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62 , 35993623.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., B. Currie, P. Rodriguez, S. G. Cober, I. Zawadzki, G. A. Isaac, and M. Wolde, 2002: Cloud phase detection in winter stratiform clouds using polarimetric Doppler radar. Proc. Second European Conf. on Radar Meteorology, Delft, Netherlands, Copernicus GmbH, 90–94.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., P. Rodriguez, M. Wolde, B. Currie, S. Cober, I. Zawadzki, and G. Isaac, 2004: Evaluation of ground-based radar and in-situ aircraft data comparison in winter storms. Proc. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Commission on Clouds and Precipitation, 238.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman Jr., 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116 , 21722182.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64 , 30163043.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., S. G. Cober, J. W. Strapp, A. V. Korolev, A. Tremblay, and D. L. Marcotte, 2001: Recent Canadian research on aircraft in-flight icing. Can. Aeronaut. Space J., 47 , 213221.

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and Coauthors, 2005: First results from the Alliance Icing Research Study II. Preprints, 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA-2005-0252.

    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., J. Lutz, and J. Vivekanandan, 2000: S-Pol: NCAR’s polarimetric Doppler research radar. Proc. Int. Geoscience and Remote Sensing Symp., Honolulu, HI, IEEE, 1570–1573.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9 , 86103.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60 , 29572974.

  • Korolev, A., and G. A. Isaac, 2006: Relative humidity in liquid, mixed-phase, and ice clouds. J. Atmos. Sci., 63 , 28652880.

  • Lascaux, F., E. Richard, and J-P. Pinty, 2006: Numerical simulations of three different MAP IOPs and the associated microphysical processes. Quart. J. Roy. Meteor. Soc., 132 , 19071926.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18 , 5060.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17 , 37993813.

    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2003: Air motions and precipitation growth in Alpine storms. Quart. J. Roy. Meteor. Soc., 129 , 345371.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., and D. S. Zrnić, 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24 , 13371350.

    • Search Google Scholar
    • Export Citation
  • Miller, E. R., and R. Friesen, 1987: Standard output data products from the NCAR Research Aviation Facility, NCAR RAF Bull. 9, 9 pp. [Available online at http://www.eol.ucar.edu/raf/Bulletins/bulletin9.html].

  • Peterson, T. C., L. O. Grant, W. R. Cotton, and D. C. Rogers, 1991: The effect of decoupled low-level flow on winter orographic clouds and precipitation in the Yampa River Valley. J. Appl. Meteor., 30 , 368386.

    • Search Google Scholar
    • Export Citation
  • Plank, V. G., R. O. Berthel, and A. A. Barnes Jr., 1980: An improved method for obtaining the water content values of hydrometeors from aircraft and radar data. J. Appl. Meteor., 19 , 12931299.

    • Search Google Scholar
    • Export Citation
  • Pobanz, B. M., J. D. Marwitz, and M. K. Politovich, 1994: Conditions associated with large-drop regions. J. Appl. Meteor., 33 , 13661372.

    • Search Google Scholar
    • Export Citation
  • Politovitch, M. K., and B. C. Bernstein, 1995: Production and depletion of supercooled liquid water in a Colorado winter storm. J. Appl. Meteor., 34 , 26312648.

    • Search Google Scholar
    • Export Citation
  • Pradier, S., M. Chong, and F. Roux, 2004: Characteristics of some frontal stratiform precipitation events south of the alpine chain during MAP. Meteor. Atmos. Phys., 87 , 197218.

    • Search Google Scholar
    • Export Citation
  • Pujol, O., J. F. Georgis, M. Chong, and F. Roux, 2005: Dynamics and microphysics of orographic precipitation during MAP IOP3. Quart. J. Roy. Meteor. Soc., 131 , 27952819.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc., 73 , 951974.

  • Rasmussen, R., B. C. Bernstein, M. Murakami, G. Stossmeister, J. Reisner, and B. Stankov, 1995: The 1990 Valentine’s Day Arctic outbreak. Part I: Mesoscale and microscale structure and evolution of a Colorado Front Range shallow upslope cloud. J. Appl. Meteor., 34 , 14811511.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a Central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31 , 324.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of Northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25 , 489504.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in Southern Utah. J. Climate Appl. Meteor., 26 , 208215.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. O. Grant, D. Feng, and J. Snider, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part I: Temporal variations. J. Climate Appl. Meteor., 25 , 468488.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39 , 11851195.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, B. E. Martner, and R. A. Kropfli, 1997: Dual-polarization radar to identify drizzle, with applications to aircraft icing avoidance. J. Aircr., 34 , 778784.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19 , 296321.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. Ferretti, 2003: Orographic effects on rainfall in MAP cases IOP2b and IOP8. Quart. J. Roy. Meteor. Soc., 129 , 373390.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze, 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133 , 811830.

    • Search Google Scholar
    • Export Citation
  • Ryerson, C., M. K. Politovich, K. L. Rancourt, G. G. Koenig, R. F. Reinking, and D. R. Miller, 2000: Overview of Mt. Washington icing sensors project. Preprints, 38th Aerospace Sciences Meeting and Exhibit, Miami, FL, AIAA, AIAA-2000-0488.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method of ice water content determination. J. Appl. Meteor., 37 , 125134.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Search Google Scholar
    • Export Citation
  • Sand, W. R., W. A. Cooper, M. K. Politovich, and D. L. Veal, 1984: Icing conditions encountered by a research aircraft. J. Climate Appl. Meteor., 23 , 14271440.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and H. Zhao, 1993: Supercooled liquid water clouds in Utah winter mountain storms: Cloud-seeding implications of a remote-sensing dataset. J. Appl. Meteor., 32 , 15481558.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., B. E. Martner, M. K. Politovich, and G. Zhang, 1999a: Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Trans. Geosci. Remote Sens., 37 , 23252334.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999b: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and M. K. Politovich, 2001: An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. J. Atmos. Oceanic Technol., 18 , 17871798.

    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1 , 8083.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Williams, J. K., and J. Vivekanandan, 2007: Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. J. Atmos. Oceanic Technol., 24 , 13171336.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., D. Hudak, B. Currie, S. G. Cober, P. Rodriguez, I. Zawadzki, G. A. Isaac, and D. Marcotte, 2003: Radar signatures of winter clouds from aircraft in-situ data and ground-based radar observations. Preprints, 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 973–975.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., D. Marcotte, G. Isaac, S. Haimov, S. Cober, and M. Bailey, 2006: Comparison of airborne W-band radar and in-situ cloud microphysics data during AIRS II: Nov 11, 2003 case. Proc. Fourth European Conf. on Radar Meteorology, Barcelona, Spain, Servei Meteorologic de Catalunya, 291–294.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, J. D. Locatelli, and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62 , 34933519.

    • Search Google Scholar
    • Export Citation
  • Young, S. A., C. M. R. Platt, R. T. Austin, and G. R. Patterson, 2000: Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS. J. Appl. Meteor., 39 , 135153.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60 , 343359.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80 , 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 507 202 12
PDF Downloads 223 70 1