Daytime Precipitation Estimation Using Bispectral Cloud Classification System

Ali Behrangi Center for Hydrometeorology and Remote Sensing, and Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by Ali Behrangi in
Current site
Google Scholar
PubMed
Close
,
Koulin Hsu Center for Hydrometeorology and Remote Sensing, and Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by Koulin Hsu in
Current site
Google Scholar
PubMed
Close
,
Bisher Imam Center for Hydrometeorology and Remote Sensing, and Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by Bisher Imam in
Current site
Google Scholar
PubMed
Close
, and
Soroosh Sorooshian Center for Hydrometeorology and Remote Sensing, and Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, Irvine, Irvine, California

Search for other papers by Soroosh Sorooshian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 μm) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04° × 0.04° latitude–longitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U.S. landmass east of 115°W. One reference infrared-only and three different bispectral (visible and infrared) rain estimation scenarios were compared to investigate the technique’s ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04°, 0.08°, 0.12°, and 0.24° latitude–longitude) scales. Overall, the results using daytime data during June–August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04° resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24° resolution, the gains were 34% and 32% for the two performance measures, respectively.

* Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Corresponding author address: Ali Behrangi, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-301, Pasadena, CA 91109. Email: ali.behrangi@jpl.nasa.gov

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

Two previously developed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) algorithms that incorporate cloud classification system (PERSIANN-CCS) and multispectral analysis (PERSIANN-MSA) are integrated and employed to analyze the role of cloud albedo from Geostationary Operational Environmental Satellite-12 (GOES-12) visible (0.65 μm) channel in supplementing infrared (10.7 mm) data. The integrated technique derives finescale (0.04° × 0.04° latitude–longitude every 30 min) rain rate for each grid box through four major steps: 1) segmenting clouds into a number of cloud patches using infrared or albedo images; 2) classification of cloud patches into a number of cloud types using radiative, geometrical, and textural features for each individual cloud patch; 3) classification of each cloud type into a number of subclasses and assigning rain rates to each subclass using a multidimensional histogram matching method; and 4) associating satellite gridbox information to the appropriate corresponding cloud type and subclass to estimate rain rate in grid scale. The technique was applied over a study region that includes the U.S. landmass east of 115°W. One reference infrared-only and three different bispectral (visible and infrared) rain estimation scenarios were compared to investigate the technique’s ability to address two major drawbacks of infrared-only methods: 1) underestimating warm rainfall and 2) the inability to screen out no-rain thin cirrus clouds. Radar estimates were used to evaluate the scenarios at a range of temporal (3 and 6 hourly) and spatial (0.04°, 0.08°, 0.12°, and 0.24° latitude–longitude) scales. Overall, the results using daytime data during June–August 2006 indicate that significant gain over infrared-only technique is obtained once albedo is used for cloud segmentation followed by bispectral cloud classification and rainfall estimation. At 3-h, 0.04° resolution, the observed improvement using bispectral information was about 66% for equitable threat score and 26% for the correlation coefficient. At coarser 0.24° resolution, the gains were 34% and 32% for the two performance measures, respectively.

* Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Corresponding author address: Ali Behrangi, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-301, Pasadena, CA 91109. Email: ali.behrangi@jpl.nasa.gov

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3051.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and A. Gruber, 2001: GOES multispectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Behrangi, A., K-L. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009a: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10 , 14141429.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., K-L. Hsu, B. Imam, S. Sorooshian, and R. J. Kuligowski, 2009b: Evaluating the utility of multi-spectral information in delineating the areal extent of precipitation. J. Hydrometeor., 10 , 684700.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., R. Brown, and C. G. Collier, 1993: Delineation of precipitation areas using Meteosat infrared and visible data in the region of the United Kingdom. J. Appl. Meteor., 32 , 884898.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Duda, R., and P. Hart, 1973: Pattern Classification and Scene Analysis. John Wiley and Sons, 482 pp.

  • Ebert, E. E., M. J. Manton, P. A. Arkin, R. J. Allam, C. E. Holpin, and A. Gruber, 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 77 , 28752887.

    • Search Google Scholar
    • Export Citation
  • Everitt, B. S., 1993: Cluster Analysis. 3rd ed. Halsted Press, 170 pp.

  • Grassotti, C., and L. Garand, 1994: Classification-based rainfall estimation using satellite data and numerical forecast model fields. J. Appl. Meteor., 33 , 159178.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., R. C. Lo, G. A. Poe, R. Savage, and J. L. Peirce, 1987: Special Sensor Microwave/Imager: User’s Guide. Naval Research Laboratory, 177 pp.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K. L. Hsu, S. Sorooshian, and X. G. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43 , 18341852.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K. L. Hsu, S. Sorooshian, and X. G. Gao, 2005: Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system. J. Geophys. Res., 110 , D06102. doi:10.1029/2004JD005301.

    • Search Google Scholar
    • Export Citation
  • Hou, A., G. S. Jackson, C. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–170.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., X. G. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., H. V. Gupta, X. G. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35 , 16051618.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82 , 205217.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 10881104.

    • Search Google Scholar
    • Export Citation
  • King, P. W. S., W. D. Hogg, and P. A. Arkin, 1995: The role of visible data in improving satellite rain-rate estimates. J. Appl. Meteor., 34 , 16081621.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1984: Self Organization and Associative Memory. Springer-Verlag, 255 pp.

  • Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3 , 112130.

    • Search Google Scholar
    • Export Citation
  • Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Adv. Space Res., 19 , 511514.

  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf].

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and G. L. Austin, 1979: The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmos.—Ocean, 17 , 7792.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J. B., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, Vol. 1, Berkeley, CA, University of California Press, 281–297.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17 , 927934.

    • Search Google Scholar
    • Export Citation
  • Manobianco, J., S. Koch, V. M. Karyampudi, and A. J. Negri, 1994: The impact of assimilating satellite-derived precipitation rates on numerical simulations of the ERICA IOP 4 cyclone. Mon. Wea. Rev., 122 , 341365.

    • Search Google Scholar
    • Export Citation
  • Martin, D. W., B. Goodman, T. J. Schmit, and E. C. Cutrim, 1990: Estimation of daily rainfall over the Amazon basin. J. Geophys. Res., 95 , 1704317050.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48 , 728751.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, and P. J. Wetzel, 1984: Rain estimation from satellites—An examination of the Griffith–Woodley technique. J. Climate Appl. Meteor., 23 , 102116.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, F., C. H. Wash, M. Stewart, and C. E. Motell, 1990: Rain estimation from infrared and visible GOES satellite data. J. Appl. Meteor., 29 , 209223.

    • Search Google Scholar
    • Export Citation
  • Qiu, D., and A. C. Tamhane, 2007: A comparative study of the K-means algorithm and the normal mixture model for clustering: Univariate case. J. Stat. Plann. Inference, 137 , 37223740.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79 , 24572476.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5 , 570575.

  • Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 20352046.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., X. Gao, K. Hsu, R. A. Maddox, Y. Hong, H. V. Gupta, and B. Imam, 2002: Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information. J. Climate, 15 , 9831001.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., C. D. Peters-Lidard, B. J. Choudhury, and M. Garcia, 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8 , 11651183.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., C. Kidd, D. Kniveton, and T. J. Bellerby, 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18 , 742755.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and G. A. Isaac, 1985: On a new approach for instantaneous rain area delineation in the mid-latitudes using GOES data. J. Climate Appl. Meteor., 24 , 12081218.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and S. D. Miller, 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43 , 10591069.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., E. E. Ebert, H. J. Oh, B. J. Sohn, V. Levizzani, E. A. Smith, and R. R. Ferraro, 2003: Validation of an operational global precipitation analysis at short time scales. Preprints, 12th Conf. Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., JP1.2. [Available online at http://ams.confex.com/ams/pdfpapers/56865.pdf].

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., C. G. Griffith, J. S. Griffin, and S. C. Stromatt, 1980: The inference of GATE convective rainfall from SMS-1 imagery. J. Appl. Meteor., 19 , 388408.

    • Search Google Scholar
    • Export Citation
  • Wu, R., J. A. Weinman, and R. T. Chin, 1985: Determination of rainfall rates from GOES satellite images by a pattern recognition technique. J. Atmos. Oceanic Technol., 2 , 314330.

    • Search Google Scholar
    • Export Citation
  • Xu, L., S. Sorooshian, X. Gao, and H. V. Gupta, 1999: A cloud-patch technique for identification and removal of no-rain clouds from satellite infrared imagery. J. Appl. Meteor., 38 , 11701181.

    • Search Google Scholar
    • Export Citation
  • Yang, G-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 744 544 155
PDF Downloads 130 63 5