Proposing the Simplification of the Multilayer Urban Canopy Model: Intercomparison Study of Four Models

Ryosaku Ikeda Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan

Search for other papers by Ryosaku Ikeda in
Current site
Google Scholar
PubMed
Close
and
Hiroyuki Kusaka Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan

Search for other papers by Hiroyuki Kusaka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study proposes the simplification of the multilayer urban canopy model. Four types of multilayer urban canopy models—level 4, level 3, level 2, and level 1—are developed to reduce the computational load of the heat budget calculations at the wall surface. The level 4 model, which accounts for the wall directions and the vertical layer, is simplified in three ways: the level 3 model only accounts for the vertical layers, the level 2 model accounts for the wall directions, and the level 1 model accounts for neither the wall directions nor the vertical layer. From the simplification, compared to the level 4 model, the memory is reduced by 57%, 65%, and 72% for the level 3–level 1 models, respectively, when the vertical canopy layer is seven. At the same time, the CPU time is reduced by 67%, 70%, and 78% for the level 3–level 1 models. Then, each canopy model is compared with observations in Tokyo. The results show that the simulations from the four models are close to the observed ones, and the differences among the four models are very small. An additional model intercomparison study based on idealized simulations indicates that the level 3 model can be used instead of the level 4 model in any condition, whereas the level 2 and level 1 models are proposed to be used under conditions with a large sky view factor.

Corresponding author address: Ryosaku Ikeda, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan. Email: s0820923@u.tsukuba.ac.jp

Abstract

The study proposes the simplification of the multilayer urban canopy model. Four types of multilayer urban canopy models—level 4, level 3, level 2, and level 1—are developed to reduce the computational load of the heat budget calculations at the wall surface. The level 4 model, which accounts for the wall directions and the vertical layer, is simplified in three ways: the level 3 model only accounts for the vertical layers, the level 2 model accounts for the wall directions, and the level 1 model accounts for neither the wall directions nor the vertical layer. From the simplification, compared to the level 4 model, the memory is reduced by 57%, 65%, and 72% for the level 3–level 1 models, respectively, when the vertical canopy layer is seven. At the same time, the CPU time is reduced by 67%, 70%, and 78% for the level 3–level 1 models. Then, each canopy model is compared with observations in Tokyo. The results show that the simulations from the four models are close to the observed ones, and the differences among the four models are very small. An additional model intercomparison study based on idealized simulations indicates that the level 3 model can be used instead of the level 4 model in any condition, whereas the level 2 and level 1 models are proposed to be used under conditions with a large sky view factor.

Corresponding author address: Ryosaku Ikeda, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan. Email: s0820923@u.tsukuba.ac.jp

Save
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114 , 91109.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A., 1962: The vertical distribution of wind and turbulent exchange in neutral atmosphere. J. Geophys. Res., 67 , 30953102.

  • Brown, M. J., 2000: Urban parameterizations for mesoscale meteorological models. Mesoscale Atmospheric Dispersion, Z. Boybeyi, Ed., Wessex Press, 193–255.

    • Search Google Scholar
    • Export Citation
  • Chen, F., H. Kusaka, M. Tewari, J-W. Bao, and H. Hirakuchi, 2004: Utilizing the coupled WRF/LSM/URBAN modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area. Preprints, Fifth Conf. on Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc., 9.11. [Available online at http://ams.confex.com/ams/AFAPURBBIO/techprogram/paper_79765.htm].

    • Search Google Scholar
    • Export Citation
  • Chen, F., M. Tewari, Y. Liu, T. Warner, H. Kusaka, J. Bao, W. Coirier, and L. Alexis, 2006: Development and application of an integrated urban modeling system for the Weather Research and Forecasting (WRF) model. Proc. Sixth Int. Conf. for Urban Climate, Göteborg, Sweden, WMO, C1.

    • Search Google Scholar
    • Export Citation
  • Chin, H. N. S., M. J. Leach, G. A. Sugiyama, J. M. Leone, H. Walker, J. S. Nasstrom, and M. J. Brown, 2005: Evaluation of an urban canopy parameterization in a mesoscale model using VTMX and URBAN 2000 data. Mon. Wea. Rev., 133 , 20432068.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound.-Layer Meteor., 113 , 111158.

    • Search Google Scholar
    • Export Citation
  • Hagishima, A., J. Tanimoto, T. Katayama, and K. Ohara, 2001: An organic analysis for quantitative estimation of heat island by the revised architecture-urban-soil-simultaneous simulation model, AUSSSM. Part 1: Theoretical frame of the model and results of standard solution (in Japanese). J. Archit. Plann. Environ. Eng., 550 , 7986.

    • Search Google Scholar
    • Export Citation
  • Harman, I. N., J. F. Barlow, and S. E. Belcher, 2004: Scalar fluxes from urban street canyons. Part II: Model. Bound.-Layer Meteor., 113 , 387410.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116 , 423443.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, Y., and R. Ooka, 2006: Improvement of the prediction accuracy of radiation calculation in the urban canopy model incorporated into the meso-scale meteorological model (in Japanese). J. Archit. Plann. Environ. Eng., 609 , 6370.

    • Search Google Scholar
    • Export Citation
  • Kimura, F., 1989: Heat flux on mixture of different land-use surface: Test of a new parameterization scheme. J. Meteor. Soc. Japan, 67 , 401409.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., and F. H. Liu, 1998: A study on the urban thermal environment obtained through one-dimensional urban canopy model (in Japanese). J. Japan Soc. Atmos. Environ., 33 , 179192.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, 2005: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteor., 116 , 395421.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004a: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan, 82 , 6780.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004b: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43 , 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and H. Hayami, 2006: Numerical simulation of local weather for a high photochemical oxidant event using the WRF model. JSME Int. J., 49 , 7277.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101 , 329358.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Chen, M. Tewari, and H. Hirakuchi, 2005: Impact of the urban canopy model in the Next-Generation Numerical Weather Prediction Model WRF (in Japanese). Environ. Syst. Res., 33 , 159164.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., F. Chen, M. Tewari, M. Duda, J. Dudhia, Y. Miya, and Y. Akimoto, cited. 2009: Performance of the WRF model as a high resolution regional climate model: Model intercomparison study. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/374679-2-090518111637-003.pdf].

    • Search Google Scholar
    • Export Citation
  • Lee, S-H., and S-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modeling. Bound.-Layer Meteor., 126 , 73102.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104 , 463490.

  • Lin, C-Y., F. Chen, J. C. Huang, W-C. Chen, Y-A. Liou, W-N. Chen, and S-C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos. Environ., 42 , 56355649. doi:10.1016/j.atmosenv.2008.03.015.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddies fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41 , 12471266.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2003: A two-dimensional numerical study of the impact of a city on atmospheric circulation and pollutant dispersion in a coastal environment. Bound.-Layer Meteor., 108 , 91119.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., Y-A. Roulet, M. Junier, F. Kirchner, M. W. Rotach, and A. Clappier, 2003: On the impact of urban exchange parameterizations on air quality simulations: The Athens case. Atmos. Environ., 37 , 42174231.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94 , 357397.

  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48 , 484501.

    • Search Google Scholar
    • Export Citation
  • Mizuno, T., and Coauthors, 1997: Development of a verification method of warming provision technologies within metropolitan cities (in Japanese). National Institute for Resources and Environment Rep. 97-1, 311 pp.

    • Search Google Scholar
    • Export Citation
  • Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteor., 43 , 17001710.

    • Search Google Scholar
    • Export Citation
  • Moriwaki, R., M. Kanda, and H. Nitta, 2006: Carbon dioxide build-up within a suburban canopy layer in winter night. Atmos. Environ., 40 , 13941407.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., Y. Genchi, H. Kondo, Y. Kikegawa, H. Yoshikado, and Y. Hirano, 2007: Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteor. Climatol., 46 , 6681.

    • Search Google Scholar
    • Export Citation
  • Otte, T. L., A. Lacser, S. Dupont, and J. K. S. Ching, 2004: Implementation of an urban canopy parameterization in a mesoscale meteorological model. J. Appl. Meteor., 43 , 16481665.

    • Search Google Scholar
    • Export Citation
  • Roulet, Y-A., A. Martilli, M. W. Rotach, and A. Clappier, 2005: Validation of an urban surface exchange parameterization for mesoscale models –1D case in a street canyon. J. Appl. Meteor., 44 , 14841498.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42 , 716738.

    • Search Google Scholar
    • Export Citation
  • Vu, T. C., Y. Ashie, and T. Asaeda, 2002: A k-ε turbulence closure model for the atmospheric boundary layer including urban canopy. Bound.-Layer Meteor., 102 , 459490.

    • Search Google Scholar
    • Export Citation
  • Watanabe, T., and J. Kondo, 1990: The influence of the canopy structure and density upon the mixing length within and above vegetation. J. Meteor. Soc. Japan, 68 , 227235.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2002: Simple modifications to improve fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model performance for the Phoenix, Arizona, metropolitan area. J. Appl. Meteor., 41 , 971979.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., N. Sato, T. Izumi, K. Hanaki, and T. Aramaki, 2008: Modified RAMS-Urban canopy model for heat island simulation in Chongqing, China. J. Appl. Meteor. Climatol., 47 , 509524.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 92 2
PDF Downloads 148 24 1