Downscaling and Bias Correcting a Cold Season Precipitation Climatology over Coastal Southern British Columbia Using the Regional Atmospheric Modeling System (RAMS)

B. Ainslie University of Northern British Columbia, Prince George, British Columbia, Canada

Search for other papers by B. Ainslie in
Current site
Google Scholar
PubMed
Close
and
P. L. Jackson University of Northern British Columbia, Prince George, British Columbia, Canada

Search for other papers by P. L. Jackson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thirty years of the North American Regional Reanalysis (NARR) are dynamically downscaled to an 8-km grid spacing using the Regional Atmospheric Modeling System (RAMS) to generate a climatology of glacier winter accumulation over the southern Coast Mountains in British Columbia (BC), Canada. RAMS precipitation fields are bias corrected using observations from Environment Canada (EC) synoptic and climate stations and BC provincial snow pillow stations. Raw and bias-corrected model output is compared with observations from EC Reference Climate Network stations, BC provincial Ministry of Transportation and Highways stations, BC Hydro stations, snow course data, and glacier mass balance studies. A water balance is also applied to 12 drainage basins located within the modeling domain to test the consistency of both the raw and bias-corrected precipitation fields with observed streamflow. Model output is compared with the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) and bias-corrected NARR. Isotropic spectral power densities are examined to compare the effective spatial resolution of the various precipitation fields. The spatial distribution of the bias-correction field suggests that RAMS underpredicts precipitation on the western edge of Vancouver Island, Canada, and overpredicts along the southern Coast Mountains. The bias correction helps close the water balance budgets in all basins except the Somass on Vancouver Island. The bias correction generally improves the agreement between RAMS and observed snow water equivalent amounts at the glacier and snow course sites, and observed precipitation amounts at the synoptic, climate, and snow pillow stations. The RAMS and NARR isotropic spectral power densities show a loss of variability at approximately 45 and 63 km, while PRISM shows little falloff down to 16 km.

Corresponding author address: B. Ainslie, Environmental Science and Engineering Program, University of Northern British Columbia, Prince George BC V2N 4Z9, Canada. Email: ainslie@unbc.ca

Abstract

Thirty years of the North American Regional Reanalysis (NARR) are dynamically downscaled to an 8-km grid spacing using the Regional Atmospheric Modeling System (RAMS) to generate a climatology of glacier winter accumulation over the southern Coast Mountains in British Columbia (BC), Canada. RAMS precipitation fields are bias corrected using observations from Environment Canada (EC) synoptic and climate stations and BC provincial snow pillow stations. Raw and bias-corrected model output is compared with observations from EC Reference Climate Network stations, BC provincial Ministry of Transportation and Highways stations, BC Hydro stations, snow course data, and glacier mass balance studies. A water balance is also applied to 12 drainage basins located within the modeling domain to test the consistency of both the raw and bias-corrected precipitation fields with observed streamflow. Model output is compared with the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) and bias-corrected NARR. Isotropic spectral power densities are examined to compare the effective spatial resolution of the various precipitation fields. The spatial distribution of the bias-correction field suggests that RAMS underpredicts precipitation on the western edge of Vancouver Island, Canada, and overpredicts along the southern Coast Mountains. The bias correction helps close the water balance budgets in all basins except the Somass on Vancouver Island. The bias correction generally improves the agreement between RAMS and observed snow water equivalent amounts at the glacier and snow course sites, and observed precipitation amounts at the synoptic, climate, and snow pillow stations. The RAMS and NARR isotropic spectral power densities show a loss of variability at approximately 45 and 63 km, while PRISM shows little falloff down to 16 km.

Corresponding author address: B. Ainslie, Environmental Science and Engineering Program, University of Northern British Columbia, Prince George BC V2N 4Z9, Canada. Email: ainslie@unbc.ca

Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108 , 4257. doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Anders, A., G. H. Roe, D. R. Durran, and J. R. Minder, 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8 , 1068–1081.

    • Search Google Scholar
    • Export Citation
  • Antic, S., R. Laprise, B. Denis, and R. de Elia, 2006: Testing the downscaling ability of a oneway nested regional climate model in regions of complex topography. Climate Dyn., 26 , 305–325.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and D. S. Battisti, 1999: Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. J. Climate, 12 , 3181–3196.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., L. Bai, and G. G. Bjarmason, 2005: High-resolution regional climate simulations over Iceland using Polar MM5. Mon. Wea. Rev., 133 , 3528–3547.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41 , 1–14.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the regional atmospheric modeling system (RAMS). J. Geophys. Res., 110 , D05108. doi:10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20 , 3844–3865.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1983: A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor., 25 , 289–321.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137–154.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., C. F. Mass, and K. J. Westrick, 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool season. Wea. Forecasting, 15 , 730–744.

    • Search Google Scholar
    • Export Citation
  • Comarazamy, D. E., and J. E. González, 2008: On the validation of the simulation of early season precipitation on the island of Puerto Rico using a mesoscale atmospheric model. J. Hydrometeor., 9 , 507–520.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 5–29.

  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22 , 99–113.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris, 2008: Physiographically sensitive mapping of temperature and precipitation across the conterminous United States. Int. J. Climatol., 28 , 2031–2064. doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and D. S. Wilks, 2009: Radar-guided interpolation of climatological precipitation data. Int. J. Climatol., 29 , 185–196.

    • Search Google Scholar
    • Export Citation
  • Dyurgerov, M., 2002: Glacier mass balance and regime: Data of measurements and analysis. Tech. Rep. Occasional Paper 55, Institute of Arctic and Alpine Research, 268 pp.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area model. Mon. Wea. Rev., 113 , 1554–1562.

  • Fernández, J., J. P. Montávez, J. Sáenz, J. F. González-Rouco, and E. Zorita, 2007: Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle. J. Geophys. Res., 112 , D04101. doi:10.1029/2005JD006649.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11 , 1203–1211.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., 1978: Accuracy of Canadian snow gage measurements. J. Appl. Meteor., 17 , 1542–1548.

  • Gourley, J. J., and B. E. Vieux, 2005: A method for evaluating the accuracy of quantitative precipitation estimates from a hydrological modelling perspective. J. Hydrometeor., 6 , 115–133.

    • Search Google Scholar
    • Export Citation
  • Guan, H., J. L. Wilson, and O. Makhnin, 2005: Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeor., 6 , 1018–1031.

    • Search Google Scholar
    • Export Citation
  • Guirguis, K. J., and R. Avissar, 2008: An analysis of precipitation variability, persistence, and observational data uncertainty in the western United States. J. Hydrometeor., 9 , 843–865.

    • Search Google Scholar
    • Export Citation
  • Hare, F. K., and J. E. Hay, 1974: The climate of Canada and Alaska. Climates of North America, R. A. Bryson and F. K. Hare, Eds., Vol. 11, World Survey of Climatology, Elsevier, 49–192.

    • Search Google Scholar
    • Export Citation
  • Harris, D., E. Foufoula-Georgiou, K. K. Droegemeier, and J. J. Levit, 2001: Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2 , 406–418.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center Atlas 7. [Available online at http://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/toc.html].

    • Search Google Scholar
    • Export Citation
  • Hodge, S. M., D. C. Trabant, R. M. Krimmel, T. A. Heinrichs, R. S. March, and E. G. Josberger, 1998: Climate variations and changes in mass of three glaciers in western North America. J. Climate, 11 , 2161–2179.

    • Search Google Scholar
    • Export Citation
  • Juang, H-M. H., and K. Kamamitsu, 1994: The NMC nested regional spectral model. Mon. Wea. Rev., 122 , 3–26.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437–471.

  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20 , 5553–5571.

    • Search Google Scholar
    • Export Citation
  • Lo, J. C-F., Z-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research And Forecasting (WRF) model. J. Geophys. Res., 113 , D09112. doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83 , 407–430.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23 , 438–459.

    • Search Google Scholar
    • Export Citation
  • McCabe Jr., G. J., and A. G. Fountain, 1995: Relations between atmospheric circulation and mass balance of South Cascade glacier, Washington, U.S.A. Arct. Alp. Res., 27 , 226–233.

    • Search Google Scholar
    • Export Citation
  • Mekis, E., and W. D. Hogg, 1999: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos.–Ocean, 37 , 53–85.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulent closure models for planetary boundary layers. J. Atmos. Sci., 31 , 1791–1806.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87 , 343–360.

  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134 , 817–839.

    • Search Google Scholar
    • Export Citation
  • Mokievsky-Zubok, O., O. S. J. Ommanney, and J. Power, 1985: NHRI glacier mass balance 1964–1984 (Cordillera and arctic). National Hydrology Research Institute Tech. Rep., Environment Canada, 59 pp.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., 1985: A general form of Kuo’s cumulus parameterization. Mon. Wea. Rev., 113 , 1411–1416.

  • Rockel, B., C. L. Castro, R. A. Pielke Sr., H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113 , D21107. doi:10.1029/2007JD009461.

    • Search Google Scholar
    • Export Citation
  • Rögnvaldsson, O., and O. Olafsson, 2002: Downscaling experiments with the MM5 model: Determining an optimal configuration for climatological downscaling studies of precipitation in Iceland. Icelandic Meteorological Office Tech. Rep., 21 pp. [Available online at http://andvari.vedur.is/~haraldur/urkoma.pdf].

    • Search Google Scholar
    • Export Citation
  • Rögnvaldsson, O., P. Crochet, and H. Ólafsson, 2004: Mapping precipitation in Iceland using numerical simulations and statistical modeling. Meteor. Z., 13 , 209–219.

    • Search Google Scholar
    • Export Citation
  • Rögnvaldsson, O., J. F. Jónsdóttir, and H. Ólafsson, 2007: Numerical simulations of precipitation in the complex terrain of Iceland—Comparison with glaciological and hydrological data. Meteor. Z., 16 , 71–85.

    • Search Google Scholar
    • Export Citation
  • Rupper, S., and G. Roe, 2008: Glacier changes and regional climate: A mass and energy balance approach. J. Climate, 21 , 5384–5401.

    • Search Google Scholar
    • Export Citation
  • Rupper, S., E. J. Steig, and G. Roe, 2004: The relationship between snow accumulation at Mt. Logan, Yukon, Canada, and climate variability in the North Pacific. J. Climate, 17 , 4724–4739.

    • Search Google Scholar
    • Export Citation
  • Salathé Jr., E. P., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21 , 5708–5726.

    • Search Google Scholar
    • Export Citation
  • Schiefer, E., B. Menounos, and R. Wheate, 2007: Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett., 34 , L16503. doi:10.1029/2007GL030780.

    • Search Google Scholar
    • Export Citation
  • Shea, J. M., R. D. Moore, and K. Stahl, 2009: Derivation of melt factors from glacier mass-balance records in western Canada. J. Glaciol., 55 , 123–130.

    • Search Google Scholar
    • Export Citation
  • Stahl, K., R. D. Moore, J. A. Floyer, M. G. Asplin, and I. G. McKendry, 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteor., 139 , 224–236.

    • Search Google Scholar
    • Export Citation
  • Taylor, W. G., 1996: Statistical relationships between topography and precipitation in a mountainous region. Northwest Sci., 70 , 164–178.

    • Search Google Scholar
    • Export Citation
  • van der Linden, S., and J. H. Christensen, 2003: Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data. J. Geophys. Res., 108 , 4072. doi:10.1029/2001JD001420.

    • Search Google Scholar
    • Export Citation
  • Vasić, S., C. A. Lin, I. Zawadzki, O. Bousquet, and D. Chaumont, 2007: Evaluation of precipitation from numerical weather prediction models and satellites using values retrieved from radars. Mon. Wea. Rev., 135 , 3750–3766.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and C. J. Tremback, 2005: Modification for the transition from LEAF-2 to LEAF-3. Atmet, LLC Tech. Rep., Boulder, CO, 13 pp.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and C. J. Tremback, 2006: RAMS regional atmospheric modeling system version 6.0: Model input namelist parameters. Atmet, LLC Tech. Rep., Boulder, CO, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39 , 931–944.

    • Search Google Scholar
    • Export Citation
  • Wang, T., A. Hamann, D. L. Spittlehouse, and S. N. Aitken, 2006: Development of scale-free climate data for western Canada for use in resource management. Int. J. Climatol., 26 , 383–397.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., and C. S. Bretherton, 2000: Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J. Climate, 13 , 1936–1950.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., C. S. Bretherton, and E. P. Salathé Jr., 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16 , 799–816.

    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32 , L19501. doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
  • Yarnal, B., 1984: Synoptic-scale atmospheric circulation over British Columbia in relation to the mass balance of Sentinel Glacier. Ann. Assoc. Amer. Geogr., 74 , 375–392.

    • Search Google Scholar
    • Export Citation
  • Yin, Z-Y., X. Zhang, X. Liu, M. Colella, and X. Chen, 2008: An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J. Hydrometeor., 9 , 301–326.

    • Search Google Scholar
    • Export Citation
  • Yuan, F., M. A. Arain, T. A. Black, and K. Morgenstern, 2007: Energy and water exchanges modulated by soil-plant nitrogen cycling in a temperate Pacific Northwest conifer forest. Ecol. Modell., 201 , 331–347.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 45 3
PDF Downloads 105 17 0