Remote Sensing of Multilayer Cloud-Top Pressure Using Combined Measurements of MERIS and AATSR on board Envisat

Rasmus Lindstrot Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rasmus Lindstrot in
Current site
Google Scholar
PubMed
Close
,
Rene Preusker Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by Rene Preusker in
Current site
Google Scholar
PubMed
Close
, and
Jürgen Fischer Institut für Weltraumwissenschaften, Freie Universität Berlin, Berlin, Germany

Search for other papers by Jürgen Fischer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel and unique algorithm for the retrieval of multilayer cloud-top pressure is presented, relying on synergetic observations of the Medium Resolution Imaging Spectrometer (MERIS) and Advanced Along Track Scanning Radiometer (AATSR) on board the Environmental Satellite (Envisat). The retrieval is based on the exploitation of the differing signals observed in the thermal infrared spectral region (AATSR) and the oxygen A band at 0.76 μm (MERIS). Past studies have shown that the cloud-top pressure retrieved from MERIS measurements is highly accurate in the case of low single-layered clouds. In contrast, in the presence of multilayered clouds like cirrus overlying water clouds, the derived cloud height is biased. In this framework, an optimal estimation algorithm for the correction of the measured O2 A transmission for the influence of the upper cloud layer was developed. The algorithm is best applicable in cases of optically thin cirrus (1 ≤ τ ≤ 5) above optically thick water clouds (τ > 5), as found frequently in the vicinity of convective or frontal cloud systems. The split-window brightness temperature difference technique is used for the identification of suitable cases. The sensitivities of the AATSR and MERIS measurements to multilayered clouds are presented and discussed, revealing that in the case of dual-layered clouds, the AATSR-derived cloud height is close to the upper cloud layer, even if it is optically thin. In contrast, the cloud height retrieved from MERIS measurements represents the optical center of the cloud system, which is close to the lower layer in cases where the upper layer is optically thin. Two case studies of convective, multilayered cloud systems above the northern Atlantic Ocean are shown, demonstrating the plausibility of the approach. The presented work is relevant especially in view of the upcoming Global Monitoring for Environment and Security Sentinel-3 satellite to be launched in 2012 that will carry the respective MERIS and AATSR follow-up instruments Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR).

Corresponding author address: Rasmus Lindstrot, Institut für Weltraumwissenschaften, FU Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. Email: rasmus.lindstrot@wew.fu-berlin.de

Abstract

A novel and unique algorithm for the retrieval of multilayer cloud-top pressure is presented, relying on synergetic observations of the Medium Resolution Imaging Spectrometer (MERIS) and Advanced Along Track Scanning Radiometer (AATSR) on board the Environmental Satellite (Envisat). The retrieval is based on the exploitation of the differing signals observed in the thermal infrared spectral region (AATSR) and the oxygen A band at 0.76 μm (MERIS). Past studies have shown that the cloud-top pressure retrieved from MERIS measurements is highly accurate in the case of low single-layered clouds. In contrast, in the presence of multilayered clouds like cirrus overlying water clouds, the derived cloud height is biased. In this framework, an optimal estimation algorithm for the correction of the measured O2 A transmission for the influence of the upper cloud layer was developed. The algorithm is best applicable in cases of optically thin cirrus (1 ≤ τ ≤ 5) above optically thick water clouds (τ > 5), as found frequently in the vicinity of convective or frontal cloud systems. The split-window brightness temperature difference technique is used for the identification of suitable cases. The sensitivities of the AATSR and MERIS measurements to multilayered clouds are presented and discussed, revealing that in the case of dual-layered clouds, the AATSR-derived cloud height is close to the upper cloud layer, even if it is optically thin. In contrast, the cloud height retrieved from MERIS measurements represents the optical center of the cloud system, which is close to the lower layer in cases where the upper layer is optically thin. Two case studies of convective, multilayered cloud systems above the northern Atlantic Ocean are shown, demonstrating the plausibility of the approach. The presented work is relevant especially in view of the upcoming Global Monitoring for Environment and Security Sentinel-3 satellite to be launched in 2012 that will carry the respective MERIS and AATSR follow-up instruments Ocean and Land Colour Instrument (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR).

Corresponding author address: Rasmus Lindstrot, Institut für Weltraumwissenschaften, FU Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. Email: rasmus.lindstrot@wew.fu-berlin.de

Save
  • Aguirre, M., and Coauthors, 2007: Sentinel-3, the ocean and medium-resolution land mission for GMES operational services. ESA Bull., 131 , 2429.

    • Search Google Scholar
    • Export Citation
  • Baum, B., and B. Wielicki, 1994: Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors. J. Appl. Meteor., 33 , 107117.

    • Search Google Scholar
    • Export Citation
  • Baum, B., R. F. Arduini, B. A. Wielicki, P. Minnis, and S-C. Tsay, 1994: Multilevel cloud retrieval using multispectral HIRS and AVHRR data: Nighttime oceanic analysis. J. Geophys. Res., 99 , 54995515.

    • Search Google Scholar
    • Export Citation
  • Baum, B., and Coauthors, 1995: Satellite remote sensing of multiple cloud layers. J. Atmos. Sci., 52 , 42104230.

  • Baum, B., R. Frey, G. Mace, M. Harkey, and P. Yang, 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42 , 905919.

    • Search Google Scholar
    • Export Citation
  • Baum, B., A. Heymsfield, P. Yang, and S. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44 , 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44 , 18961911.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and J. Fischer, 2000: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared. J. Quant. Spectrosc. Radiat. Transfer, 66 , 539553.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and R. Preusker, 2006: Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements. J. Quant. Spectrosc. Radiat. Transfer, 98 , 202219. doi:10.1016/j.jqsrt.2005.05.085.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Z. Li, 2005a: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Climate, 18 , 47524771.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Z. Li, 2005b: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62 , 39934009.

    • Search Google Scholar
    • Export Citation
  • Fell, F., and J. Fischer, 2001: Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method. J. Quant. Spectrosc. Radiat. Transfer, 3 , 351388.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and H. Grassl, 1984: Radiative transfer in an atmosphere-ocean system: An azimuthally dependent matrix-operator approach. Appl. Opt., 23 , 10351039.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and H. Grassl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part I: Theoretical study. J. Appl. Meteor., 30 , 12451259.

    • Search Google Scholar
    • Export Citation
  • Fye, F. K., 1978: The AFGWC Automated Cloud Analysis Model. Air Force Global Weather Central Tech. Memo. 78-002, Offutt Air Force Base, NE, 97 pp.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, A., P. Wendling, B. Mayer, J-F. Gayet, and T. Rother, 2002: Remote sensing of cirrus cloud properties in the presence of lower clouds: An ATSR-2 case study during the Interhemispheric Differences in Cirrus Properties From Anthropogenic Emissions (INCA) experiment. J. Geophys. Res., 107 , 4693. doi:10.1029/2002JD002535.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Young, 1989: Atmospheric Radiation (Theoretical Basis). 2nd ed. Oxford University Press, 519 pp.

  • Hahn, C. J., S. G. Warren, J. London, R. M. Chervin, and R. Jenne, 1984: Atlas of simultaneous occurrence of different cloud types over land. NCAR Tech. Note TN-241+STR, 211 pp. [Available from National Center for Atmospheric Research, Boulder, CO 80307].

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2005: Global daytime distribution of overlapping cirrus cloud from NOAA’s Advanced Very High Resolution Radiometer. J. Climate, 18 , 47724784.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Matrosov, and B. Baum, 2003: Ice water path–optical depth relationships for cirrus and deep stratiform ice cloud layers. J. Appl. Meteor., 42 , 13691390.

    • Search Google Scholar
    • Export Citation
  • Huot, J-P., M. Rast, S. Delwart, J-L. Bezy, G. Levrini, and H. Tait, 2001: The optical imaging instruments and their applications–AATSR and MERIS. ESA Bull., 106 , 5666.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987: A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res., 92 , 39914000.

  • Krasnopolsky, V. M., 2007: Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys., 45 , RG3009. doi:10.1029/2006RG000200.

    • Search Google Scholar
    • Export Citation
  • Lindstrot, R., R. Preusker, T. Ruhtz, B. Heese, M. Wiegner, C. Lindemann, and J. Fischer, 2006: Validation of MERIS cloud-top pressure using airborne lidar measurements. J. Appl. Meteor. Climatol., 45 , 16121621.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, and E. E. Clothiaux, 1997: A study of composite cirrus morphology using data from a 94-GHz radar and correlation with temperature and large-scale vertical motion. J. Geophys. Res., 102 , 1358113593.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114 , D00A26. doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R., R. Fenn, J. Selby, F. Volz, and J. Garing, 1972: Optical Properties of the Atmosphere. 3rd ed. Air Force Cambridge Research Laboratories, 113 pp.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, B. A. Baum, and H. Zhang, 2006: Cloud top properties and cloud phase algorithm theoretical basis document. Algorithm Theoretical Basis Doc. MOD04, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Muller, J-P., M-A. Denis, R. D. Dundas, K. L. Mitchell, C. Naud, and H. Mannstein, 2007: Stereo cloud-top heights and cloud fraction retrieval from ATSR-2. Int. J. Remote Sens., 28 , 19211938.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and B. A. Baum, 2004: Daytime multilayered cloud detection using multispectral imager data. J. Atmos. Oceanic Technol., 21 , 11451155.

    • Search Google Scholar
    • Export Citation
  • Ou, S., K. Liou, and B. Baum, 1996: Detection of multilayer cirrus cloud systems using AVHRR data: Verification based on FIRE II IFO composite measurements. J. Appl. Meteor., 35 , 178191.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., and A. K. Heidinger, 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43 , 762778.

  • Preusker, R., and R. Lindstrot, 2009: Remote sensing of cloud-top pressure using moderately resolved measurements within the oxygen A band—A sensitivity study. J. Appl. Meteor. Climatol., 48 , 15621574.

    • Search Google Scholar
    • Export Citation
  • Rast, M., J. L. Bezy, and S. Bruzzi, 1999: The ESA Medium Resolution Imaging Spectrometer MERIS–A review of the instrument and its mission. Int. J. Remote Sens., 20 , 16811702.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 96 , 139204.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., M. Matricardi, and A. Geer, 2008: RTTOV9.1 users guide. NWP SAF Rep. NWPSAF-MO-UD-016, Met Office, 57 pp.

  • Smith, W. L., and C. M. R. Platt, 1978: Intercomparison of radiosonde, ground based laser, and satellite deduced cloud heights. J. Appl. Meteor., 17 , 17961802.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Wang, P., P. Stammes, R. van der A, G. Pinardi, and M. van Roozendael, 2008: FRESCO+: An improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmos. Chem. Phys., 8 , 65656576.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and J. A. Coakley, 1981: Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteor., 20 , 157169.

  • Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26 , 23102323.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1097 963 370
PDF Downloads 151 43 4