The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

C. S. B. Grimmond King’s College London, London, United Kingdom

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
,
M. Blackett King’s College London, London, United Kingdom

Search for other papers by M. Blackett in
Current site
Google Scholar
PubMed
Close
,
M. J. Best Met Office, Exeter, United Kingdom

Search for other papers by M. J. Best in
Current site
Google Scholar
PubMed
Close
,
J. Barlow University of Reading, Reading, United Kingdom

Search for other papers by J. Barlow in
Current site
Google Scholar
PubMed
Close
,
J-J. Baik Seoul National University, Seoul, South Korea

Search for other papers by J-J. Baik in
Current site
Google Scholar
PubMed
Close
,
S. E. Belcher University of Reading, Reading, United Kingdom

Search for other papers by S. E. Belcher in
Current site
Google Scholar
PubMed
Close
,
S. I. Bohnenstengel University of Reading, Reading, United Kingdom

Search for other papers by S. I. Bohnenstengel in
Current site
Google Scholar
PubMed
Close
,
I. Calmet Laboratoire de Mécanique des Fluides, CNRS-Ecole Centrale de Nantes, Nantes, France

Search for other papers by I. Calmet in
Current site
Google Scholar
PubMed
Close
,
F. Chen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by F. Chen in
Current site
Google Scholar
PubMed
Close
,
A. Dandou National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by A. Dandou in
Current site
Google Scholar
PubMed
Close
,
K. Fortuniak University of Łódź, Łódź, Poland

Search for other papers by K. Fortuniak in
Current site
Google Scholar
PubMed
Close
,
M. L. Gouvea King’s College London, London, United Kingdom

Search for other papers by M. L. Gouvea in
Current site
Google Scholar
PubMed
Close
,
R. Hamdi Royal Meteorological Institute, Uccle, Belgium

Search for other papers by R. Hamdi in
Current site
Google Scholar
PubMed
Close
,
M. Hendry Met Office, Exeter, United Kingdom

Search for other papers by M. Hendry in
Current site
Google Scholar
PubMed
Close
,
T. Kawai Ehime University, Matsuyama, Japan

Search for other papers by T. Kawai in
Current site
Google Scholar
PubMed
Close
,
Y. Kawamoto The University of Tokyo, Tokyo, Japan

Search for other papers by Y. Kawamoto in
Current site
Google Scholar
PubMed
Close
,
H. Kondo National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Search for other papers by H. Kondo in
Current site
Google Scholar
PubMed
Close
,
E. S. Krayenhoff University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by E. S. Krayenhoff in
Current site
Google Scholar
PubMed
Close
,
S-H. Lee University of Reading, Reading, United Kingdom

Search for other papers by S-H. Lee in
Current site
Google Scholar
PubMed
Close
,
T. Loridan King’s College London, London, United Kingdom

Search for other papers by T. Loridan in
Current site
Google Scholar
PubMed
Close
,
A. Martilli CIEMAT, Madrid, Spain

Search for other papers by A. Martilli in
Current site
Google Scholar
PubMed
Close
,
V. Masson CNRM-GAME Meteo France-CNRS, Toulouse, France

Search for other papers by V. Masson in
Current site
Google Scholar
PubMed
Close
,
S. Miao IUM, CMA, Beijing, China

Search for other papers by S. Miao in
Current site
Google Scholar
PubMed
Close
,
K. Oleson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by K. Oleson in
Current site
Google Scholar
PubMed
Close
,
G. Pigeon CNRM-GAME Meteo France-CNRS, Toulouse, France

Search for other papers by G. Pigeon in
Current site
Google Scholar
PubMed
Close
,
A. Porson Met Office, Exeter, United Kingdom
Met Office, Exeter, United Kingdom

Search for other papers by A. Porson in
Current site
Google Scholar
PubMed
Close
,
Y-H. Ryu University of Reading, Reading, United Kingdom

Search for other papers by Y-H. Ryu in
Current site
Google Scholar
PubMed
Close
,
F. Salamanca CIEMAT, Madrid, Spain

Search for other papers by F. Salamanca in
Current site
Google Scholar
PubMed
Close
,
L. Shashua-Bar Ben Gurion University of the Negev, Beer-Sheva, Israel

Search for other papers by L. Shashua-Bar in
Current site
Google Scholar
PubMed
Close
,
G-J. Steeneveld Wageningen University, Wageningen, Netherlands

Search for other papers by G-J. Steeneveld in
Current site
Google Scholar
PubMed
Close
,
M. Tombrou National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by M. Tombrou in
Current site
Google Scholar
PubMed
Close
,
J. Voogt University of Western Ontario, London, Ontario, Canada

Search for other papers by J. Voogt in
Current site
Google Scholar
PubMed
Close
,
D. Young King’s College London, London, United Kingdom

Search for other papers by D. Young in
Current site
Google Scholar
PubMed
Close
, and
N. Zhang Nanjing University, Nanjing, China

Search for other papers by N. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Corresponding author address: Sue Grimmond, Environmental Monitoring and Modelling Group, Department of Geography, King’s College London, London, WC2R 2LS, United Kingdom. Email: sue.grimmond@kcl.ac.uk

Abstract

A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no comparison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling approaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.

Corresponding author address: Sue Grimmond, Environmental Monitoring and Modelling Group, Department of Geography, King’s College London, London, WC2R 2LS, United Kingdom. Email: sue.grimmond@kcl.ac.uk

Save
  • Best, M. J., 1998: Representing urban areas in numerical weather prediction models. Proc. Second Urban Environment Symp., Albuquerque, NM, Amer. Meteor. Soc., paper 10A.2.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114 , 91109.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., C. S. B. Grimmond, and M. G. Villani, 2006: Evaluation of the urban tile in MOSES using surface energy balance observations. Bound.-Layer Meteor., 118 , 503525.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land–surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., H. Kusaka, M. Tewari, J. Bao, and H. Hirakuchi, 2004: Utilizing the coupled WRF/LSM/Urban modeling system with detailed urban classification to simulate the urban heat island phenomena over the Greater Houston area. Proc. Fifth Conference on Urban Environment, Vancouver, BC, Canada, Amer. Meteor. Soc., paper 9.11.

    • Search Google Scholar
    • Export Citation
  • Ching, J., and Coauthors, 2009: National Urban Database and Access Portal Tool. Bull. Amer. Meteor. Soc., 90 , 11571168.

  • Clarke, J. A., 1985: Energy Simulation in Building Design. Adam Hilger, 362 pp.

  • Dandou, A., M. Tombrou, E. Akylas, N. Soulakellis, and E. Bossioli, 2005: Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale model (MM5). J. Geophys. Res., 110 , D10102. doi:10.1029/2004JD005192.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and P. G. Mestayer, 2006: Parameterization of the urban energy budget with the Submesoscale Soil Model. J. Appl. Meteor. Climatol., 45 , 17441765.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., P. G. Mestayer, E. Guilloteau, E. Berthier, and H. Andrieu, 2006: Parameterization of the urban water budget with the Submesoscale Soil Model. J. Appl. Meteor. Climatol., 45 , 624648.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., and D. B. Clark, 2003: Developments in the MOSES 2 land-surface model for PILPS 2e. Global Planet. Change, 38 , 161164.

    • Search Google Scholar
    • Export Citation
  • Essery, R. L. H., M. J. Best, R. A. Betts, P. M. Cox, and C. M. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4 , 530543.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, 2005: The importance of land-cover change in simulating future climates. Science, 310 , 16741678.

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., B. Offerle, and C. S. B. Grimmond, 2004: Slab surface energy balance scheme and its application to parameterisation of the energy fluxes on urban areas. NATO ASI, Kiev, Ukraine. [Available online at www.met.rdg.ac.uk/urb_met/NATO_ASI/talks.html].

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., B. Offerle, and C. S. B. Grimmond, 2005: Application of a slab surface energy balance model to determine surface parameters for urban areas, Lund eRep. Phys. Geogr., 5 , 9091.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 1992: The suburban energy balance: methodological considerations and results for a mid-latitude west coast city under winter and spring conditions. Int. J. Climatol., 12 , 481497.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84 , 322.

  • Grimmond, C. S. B., and T. R. Oke, 1986: Urban water balance II: Results from a suburb of Vancouver, B.C. Water Resour. Res., 22 , 14041412.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evaporation–interception model for urban areas. Water Resour. Res., 27 , 17391755.

  • Grimmond, C. S. B., and T. R. Oke, 1999a: Heat storage in urban areas: Observations and evaluation of a simple model. J. Appl. Meteor., 38 , 922940.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999b: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38 , 12621292.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999c: Rates of evaporation in urban areas. Impacts of urban growth on surface and ground waters. International Association of Hydrological Sciences Publication 259, 235–243.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor., 41 , 792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., T. R. Oke, and D. G. Steyn, 1986: Urban water balance I: A model for daily totals. Water Resour. Res., 22 , 14041412.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25B , 311326.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., C. Souch, and M. Hubble, 1996: The influence of tree cover on summertime energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res., 6 , 4557.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004: Flux and turbulence measurements at a dense urban site in Marseille: Heat, mass (water, carbon dioxide) and momentum. J. Geophys. Res., 109 , D24101. doi:10.1029/2004JD004936.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2009a: Urban Surface Energy Balance Models: Model characteristics and methodology for a comparison study. Meteorological and Air Quality Models for Urban Areas, A. Baklanov et al., Eds., Springer-Verlag, 97–124.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2009b: The International Urban Energy Balance Comparison Project: Initial results from phase 2. Proc. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association for Urban Climate paper A11-6, 4 pp. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/372811-1-090524190750-003.pdf].

    • Search Google Scholar
    • Export Citation
  • Guilloteau, E., 1998: Optimized computation of transfer coefficients in surface layer with different momentum and heat roughness length. Bound.-Layer Meteor., 87 , 147160.

    • Search Google Scholar
    • Export Citation
  • Hamdi, R., and G. Schayes, 2007: Validation of Martilli’s urban boundary layer scheme with measurements from two mid-latitude European cities. Atmos. Chem. Phys., 7 , 45134526.

    • Search Google Scholar
    • Export Citation
  • Hamdi, R., and V. Masson, 2008: Inclusion of a drag approach in the Town Energy Balance (TEB) scheme: Offline 1D evaluation in a street canyon. J. Appl. Meteor. Climatol., 47 , 26272644.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and J. C. Chang, 1992: Boundary layer parameterizations for applied dispersion modeling over urban areas. Bound.-Layer Meteor., 58 , 229259.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., and J. C. Chang, 1993: Hybrid Plume Dispersion Model (HPDM) improvements and testing at three field sites. Atmos. Environ., 27A , 14911508.

    • Search Google Scholar
    • Export Citation
  • Harman, I. N., and S. E. Belcher, 2006: The surface energy balance and boundary layer over urban street canyons. Quart. J. Roy. Meteor. Soc., 132 , 27492768.

    • Search Google Scholar
    • Export Citation
  • Harman, I. N., M. J. Best, and S. E. Belcher, 2004a: Radiative exchange in an urban street canyon. Bound.-Layer Meteor., 110 , 301316.

    • Search Google Scholar
    • Export Citation
  • Harman, I. N., J. F. Barlow, and S. E. Belcher, 2004b: Scalar fluxes from urban street canyons. Part II: Model. Bound.-Layer Meteor., 113 , 387410.

    • Search Google Scholar
    • Export Citation
  • Heiple, S., and D. J. Sailor, 2008: Using building energy simulation and geospatial modelling techniques to determine high resolution building sector energy consumption profiles. Energy Build., 40 , 14261436.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and R. E. Dickinson, 1992: Intercomparison of land-surface parameterizations launched. Eos, Trans. Amer. Geophys. Union, 73 , 195196.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson, 1993: The Project for Intercomparison of Land-surface Parameterization Schemes. Bull. Amer. Meteor. Soc., 74 , 13351349.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., P. Irannejad, K. McGuffie, and A. Pitman, 2003: Predicting land-surface climates—better skill or moving targets? Geophys. Res. Lett., 30 , 1777. doi:10.1029/2003GL017387.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33 , 38973909.

    • Search Google Scholar
    • Export Citation
  • Irranejad, P., A. Henderson-Sellers, and S. Sharmeen, 2003: Importance of land-surface parameterization for latent heat simulation in global atmospheric models. Geophys. Res. Lett., 30 , 1904. doi:10.1029/2003GL018044.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 1999: Fundamentals of Atmospheric Modeling. Cambridge University Press, 656 pp.

  • Kanda, M., T. Kawai, M. Kanega, R. Moriwaki, K. Narita, and A. Hagishima, 2005a: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116 , 423443.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., T. Kawai, and K. Nakagawa, 2005b: A simple theoretical radiation scheme for regular building arrays. Bound.-Layer Meteor., 114 , 7190.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., M. Kanega, T. Kawai, H. Sugawara, and R. Moriwaki, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46 , 10671079.

    • Search Google Scholar
    • Export Citation
  • Kawai, T., M. Kanda, K. Narita, and A. Hagishima, 2007: Validation of a numerical model for urban energy-exchange using outdoor scale-model measurements. Int. J. Climatol., 27 , 19311942.

    • Search Google Scholar
    • Export Citation
  • Kawai, T., M. K. Ridwan, and M. Kanda, 2009: Evaluation of the Simple Urban Energy Balance Model using selected data from 1-yr flux observations at two cities. J. Appl. Meteor. Climatol., 48 , 693715.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, Y., and R. Ooka, 2006: Analysis of the radiation field at pedestrian level using a meso-scale meteorological model incorporating the urban canopy model. Preprints,Sixth Int. Conf. on Urban Climate, Göteburg, Sweden, WMO, 446–449.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, Y., and R. Ooka, 2009a: Accuracy validation of urban climate analysis model using MM5 incorporating a multi-layer urban canopy model. Extended Abstracts, Seventh Int. Conf. on Urban Climate, Yokohama, Japan, paper A10-1.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, Y., and R. Ooka, 2009b: Development of urban climate analysis model using MM5 Part 2 - Incorporating an urban canopy model to represent the effect of buildings (in Japanese). J. Environ. Eng., 74 , 10091018.

    • Search Google Scholar
    • Export Citation
  • Kikegawa, Y., Y. Genchi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings’ energy-demands. Appl. Energy, 76 , 449466.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., and F. H. Liu, 1998: A study on the urban thermal environment obtained through a one-dimensional urban canopy model (in Japanese). J. Japan Soc. Atmos. Environ., 33 , 179192.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, 2005: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteor., 116 , 395421.

    • Search Google Scholar
    • Export Citation
  • Krayenhoff, E. S., and J. A. Voogt, 2007: A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound.-Layer Meteor., 123 , 433461.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound.-Layer Meteor., 101 , 329358.

    • Search Google Scholar
    • Export Citation
  • Lee, S-H., and S-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126 , 73102.

    • Search Google Scholar
    • Export Citation
  • Lee, S-H., C-K. Song, J-J. Baik, and S-U. Park, 2009: Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor. Appl. Climatol., 96 , 291303.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., C. S. B. Grimmond, and V. Masson, 2004: Modelling the surface energy balance of an old Mediterranean city core. J. Appl. Meteor., 43 , 312327.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and Coauthors, 2008: Overview and first results of the Montreal Urban Snow Experiment 2005. J. Appl. Meteor. Climatol., 47 , 5975.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J. Appl. Meteor. Climatol., 45 , 912929.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136 , 9971019.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104 , 261304.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., Y. A. Roulet, M. Junier, F. Kirchner, M. W. Rotach, and A. Clappier, 2003: On the impact of urban surface exchange parameterisations on air quality simulations: The Athens case. Atmos. Environ., 37 , 42174231.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 41 , 10111026.

  • Masson, V., C. S. B. Grimmond, and T. R. Oke, 2002: Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteor., 41 , 10111026.

    • Search Google Scholar
    • Export Citation
  • Mitchell, V. G., R. G. Mein, and T. A. McMahon, 2001: Modelling the urban water cycle. Environ. Model. Software, 16 , 615629.

  • Moriwaki, R., M. Kanda, H. Senoo, A. Hagishima, and T. Kinouchi, 2008: Anthropogenic water vapor emissions in Tokyo. Water Resour. Res., 44 , W11424. doi:10.1029/2007WR006624.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and J. F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 , 145159.

  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42 , 11571173.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and K. Fortuniak, 2005: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city center. Int. J. Climatol., 25 , 14051419.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12 , 471508.

  • Oke, T. R., R. Spronken-Smith, E. Jauregui, and C. S. B. Grimmond, 1999: The energy balance of central Mexico City during the dry season. Atmos. Environ., 33 , 39193930.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008a: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47 , 10381060.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008b: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated heat island in offline simulations. J. Appl. Meteor. Climatol., 47 , 10611076.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., D. Legain, P. Durand, and V. Masson, 2007: Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int. J. Climatol., 27 , 19691981.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., A. Henderson-Sellers, and Z-L. Yang, 1990: Sensitivity of regional climates to localized precipitation in global models. Nature, 346 , 734737.

    • Search Google Scholar
    • Export Citation
  • Porson, A., I. N. Harman, S. I. Bohnenstengel, and S. E. Belcher, 2009: How many facets are needed to represent the surface energy balance of an urban area? Bound.-Layer Meteor., 132 , 107128.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126 , 941990.

  • Rowley, F. B., A. B. Algren, and J. L. Blackshaw, 1930: Surface conductances as affected by air velocity, temperature and character of surface. ASHRAE Trans., 36 , 429446.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y-H., J-J. Baik, and S-H. Lee, 2009: A new single-layer urban canopy model for use in mesoscale atmospheric models. Proc. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association for Urban Climate, paper A16-1. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/374405-1-081210150038-004%28rev%29.pdf].

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38 , 27372748.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2009: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., doi:10.1007/s00704-009-0143-8.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2009: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., doi:10.1007/s00704-009-0142-9.

    • Search Google Scholar
    • Export Citation
  • Shashua-Bar, L., and M. E. Hoffman, 2002: The green CTTC model for predicting the air temperature in small urban wooded sites. Build. Environ., 37 , 12791288.

    • Search Google Scholar
    • Export Citation
  • Shashua-Bar, L., and M. E. Hoffman, 2004: Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer. Build. Environ., 39 , 10871099.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., 2001: Summarizing multiple aspects of model performance in single diagram. J. Geophys. Res., 106 , (D7). 71837192.

  • Tremback, C. J., and R. Kessler, 1985: A surface temperature and moisture parameterization for use in mesoscale numerical models. Proc. Seventh Conf. on Numerical Weather Prediction, Montreal, Quebec, Amer. Meteor. Soc., 433–434.

    • Search Google Scholar
    • Export Citation
  • UN, cited. 2009: World urbanization prospects, The 2007 Revision Population Database. [Available online at http://esa.un.org/unup/].

  • Voogt, J. A., and C. S. B. Grimmond, 2000: Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J. Climate Appl. Meteor., 39 , 16791699.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2 , 184194.

  • Wilson, M. F., A. Henderson-Sellers, R. E. Dickinson, and P. J. Kennedy, 1987: Sensitivity of the Biosphere–Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics. J. Climate Appl. Meteor., 26 , 341362.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Nonlocal turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution III—Volume I. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Computational Mechanics Publications, 53–60.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10563 3182 132
PDF Downloads 3490 766 89