Rainfall-Rate Assignment Using MSG SEVIRI Data—A Promising Approach to Spaceborne Rainfall-Rate Retrieval for Midlatitudes

Meike Kühnlein Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Meike Kühnlein in
Current site
Google Scholar
PubMed
Close
,
Boris Thies Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Boris Thies in
Current site
Google Scholar
PubMed
Close
,
Thomas Nauß Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Thomas Nauß in
Current site
Google Scholar
PubMed
Close
, and
Jörg Bendix Laboratory for Climatology and Remote Sensing, Faculty of Geography, Philipps-University Marburg, Marburg, Germany

Search for other papers by Jörg Bendix in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential of rainfall-rate assignment using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Instrument (SEVIRI) data is investigated. For this purpose, a new conceptual model for precipitation processes in connection with midlatitude cyclones is developed, based on the assumption that high rainfall rates are linked to a high optical thickness and a large effective particle radius, whereas low rainfall rates are linked to a low optical thickness and a small effective particle radius. Reflection values in the 0.56–0.71-μm (VIS0.6) and 1.5–1.78-μm (NIR1.6) channels, which provide information about the optical thickness and the effective radius, are considered in lieu of the optical and microphysical cloud properties. An analysis of the relationship between VIS0.6 and NIR1.6 reflection and the ground-based rainfall rate revealed a high correlation between the sensor signal and the rainfall rate. Based on these findings, a method for rainfall-rate assignment as a function of VIS0.6 and NIR1.6 reflection is proposed. The validation of the proposed technique showed encouraging results, especially for temporal resolutions of 6 and 12 h. This is a significant improvement compared to existing IR retrievals, which obtain comparable results for monthly resolution. The existing relationship between the VIS0.6 and NIR1.6 reflection values and the ground-based rainfall rate is corroborated with the new conceptual model. The good validation results indicate the high potential for rainfall retrieval in the midlatitudes with the high spatial and temporal resolution provided by MSG SEVIRI.

* Current affiliation: Klimatologie, Universität Bayreuth, Bayreuth, Germany

Corresponding author address: Boris Thies, Philipps-University Marburg, Deutschhausstrasse 10, 35032 Marburg, Germany. Email: thies@lcrs.de

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

The potential of rainfall-rate assignment using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Instrument (SEVIRI) data is investigated. For this purpose, a new conceptual model for precipitation processes in connection with midlatitude cyclones is developed, based on the assumption that high rainfall rates are linked to a high optical thickness and a large effective particle radius, whereas low rainfall rates are linked to a low optical thickness and a small effective particle radius. Reflection values in the 0.56–0.71-μm (VIS0.6) and 1.5–1.78-μm (NIR1.6) channels, which provide information about the optical thickness and the effective radius, are considered in lieu of the optical and microphysical cloud properties. An analysis of the relationship between VIS0.6 and NIR1.6 reflection and the ground-based rainfall rate revealed a high correlation between the sensor signal and the rainfall rate. Based on these findings, a method for rainfall-rate assignment as a function of VIS0.6 and NIR1.6 reflection is proposed. The validation of the proposed technique showed encouraging results, especially for temporal resolutions of 6 and 12 h. This is a significant improvement compared to existing IR retrievals, which obtain comparable results for monthly resolution. The existing relationship between the VIS0.6 and NIR1.6 reflection values and the ground-based rainfall rate is corroborated with the new conceptual model. The good validation results indicate the high potential for rainfall retrieval in the midlatitudes with the high spatial and temporal resolution provided by MSG SEVIRI.

* Current affiliation: Klimatologie, Universität Bayreuth, Bayreuth, Germany

Corresponding author address: Boris Thies, Philipps-University Marburg, Deutschhausstrasse 10, 35032 Marburg, Germany. Email: thies@lcrs.de

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height-rainfall rate relations for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23 , 280296.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and A. J. Negri, 1988: A satellite technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27 , 3051.

    • Search Google Scholar
    • Export Citation
  • Aminou, D. M. A., 2002: MSG’s SEVIRI instrument. ESA Bull., 111 , 1517.

  • Amorati, R., P. P. Alberoni, V. Levizzani, and S. Nanni, 2000: IR-based satellite and radar rainfall estimates of convective storms over Northern Italy. Meteor. Appl., 7 , 118.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., 2004: Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surv. Geophys., 25 , 511537.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982-84. Mon. Wea. Rev., 115 , 5174.

    • Search Google Scholar
    • Export Citation
  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Appl. Meteor., 24 , 322333.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and S. E. Nicholson, 1998: Analysis of convective activity and its relationship to the rainfall over the Rift Valley lakes of East Africa during 1983–90 using the Meteosat infrared channel. J. Appl. Meteor., 37 , 12501264.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and A. Gruber, 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteor., 40 , 15001514.

  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

  • Bell, T. L., and P. K. Kundu, 2003: Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model. J. Geophys. Res., 108 , 4121. doi:10.1029/2002JD002641.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T. J., 2004: A feature-based approach to satellite precipitation monitoring using geostationary IR imagery. J. Hydrometeor., 5 , 910921.

    • Search Google Scholar
    • Export Citation
  • Bellon, A., S. Lovejoy, and G. L. Austin, 1980: Combining satellite and radar data for the short-range forecasting of precipitation. Mon. Wea. Rev., 108 , 15541556.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., 1997: Adjustment of the Convective-Stratiform Technique (CST) to estimate 1991/93 El Niño rainfall distribution in Ecuador and Peru by means of Meteosat-3 data. Int. J. Remote Sens., 18 , 13871394.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., 2000: Precipitation dynamics in Ecuador and Northern Peru during the 1991/92 El Niño: A remote sensing perspective. Int. J. Remote Sens., 21 , 533548.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., C. Reudenbach, and R. Rollenbeck, 2003: The Marburg Satellite Station. Proc. Meteorological Satellite Users’ Conf., Dublin, Ireland, EUMETSAT, 139–146.

    • Search Google Scholar
    • Export Citation
  • Berliner Wetterkarte e.V., 2005: Berliner Wetterkarte. No. 54. [Available online at http://wkserv.met.fu-berlin.de/].

  • Berliner Wetterkarte e.V., 2006: Berliner Wetterkarte. No. 55. [Available online at http://wkserv.met.fu-berlin.de/].

  • Cermak, J., and J. Bendix, 2008: A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res., 87 , 279292.

  • Cermak, J., J. Bendix, and M. Dobbermann, 2008: FMet—An integrated framework for Meteosat data processing for operational scientific applications. Comput. Geosci., 34 , 16381644.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., and R. Brown, 1995: Delineation of precipitation areas by correlation of Meteosat visible and infrared data with radar data. Mon. Wea. Rev., 123 , 27432757.

    • Search Google Scholar
    • Export Citation
  • Cheng, M., R. Brown, and C. G. Collier, 1993: Delineation of precipitation areas by correlation of METEOSAT visible and infrared data in the region of the United Kingdom. J. Appl. Meteor., 32 , 884898.

    • Search Google Scholar
    • Export Citation
  • Coppola, E., D. I. F. Grimes, M. Verdecchia, and G. Visconti, 2006: Validation of improved TAMANN neural network for operational satellite-derived rainfall estimation in Africa. J. Appl. Meteor. Climatol., 45 , 15571572.

    • Search Google Scholar
    • Export Citation
  • Deutscher Wetterdienst, 2001: Richtlinie für automatische Klimastationen. Deutscher Wetterdienst Rep., Offenbach, Germany, 11 pp. [Available online at http://www.dwd.de/bvbw/generator/Sites/DWDWWW/Content/Oeffentlichkeit/KU/KUPK/Schulen/Messen_Beobachten/ Bau_Wetterstation/Richtlinie_Klimastationen,templateId=raw,property=publicationFile.pdf/Richtlinie_Klimastationen.pdf].

    • Search Google Scholar
    • Export Citation
  • Deutscher Wetterdienst, 2005a: DWD weather radar network. Deutscher Wetterdienst Rep., Offenbach, Germany. [Available online at http://www.dwd.de/bvbw/generator/Sites/DWDWWW/ Content/Forschung/FE1/Datenassimilation/ Radarbroschuere_en,templateId=raw,property=publicationFile.pdf/Radarbroschuere_en.pdf].

    • Search Google Scholar
    • Export Citation
  • Deutscher Wetterdienst, 2005b: Radargestützte Analysen stündlicher Niederschlagshöhen im Echtzeitbetrieb für Deutschland (RADOLAN). Deutscher Wetterdienst Rep., Offenbach, Germany, 5 pp. [Available online at http://www.dwd.de/bvbw/generator/Sites/DWDWWW/ Content/Wasserwirtschaft/Unsere_Leistungen/Radarniederschlagsprodukte/ radolankurzbeschreibung_pdf,templateId=raw,property=publicationFile.pdf/radolankurzbeschreibung_pdf].

    • Search Google Scholar
    • Export Citation
  • Ebert, E., J. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88 , 4764.

    • Search Google Scholar
    • Export Citation
  • Feijt, A. J., D. Jolivet, R. Koelemeijer, and H. Deneke, 2004: Recent improvements to LWP retrievals from AVHRR. Atmos. Res., 72 , 315.

    • Search Google Scholar
    • Export Citation
  • Ferreira, F., P. Amayenc, S. Oury, and J. Testud, 2001: Study and test of improved rain estimates from the TRMM precipitation radar. J. Appl. Meteor., 40 , 18781899.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18 , 873900.

    • Search Google Scholar
    • Export Citation
  • Früh, B., J. Bendix, T. Nauss, M. Paulat, A. Pfeiffer, J. W. Schipper, B. Thies, and H. Wernli, 2007: Verification of precipitation from regional climate simulations and remote-sensing observations with respect to ground-based observations in the upper Danube catchment. Meteor. Z., 16 , 275293.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery - Visible and infrared studies. Mon. Wea. Rev., 106 , 11531171.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., 1973: Estimating rainfall in regions of active convection. J. Appl. Meteor., 12 , 110118.

  • Ha, E., and G. R. North, 1999: Error analysis for some ground validation designs for satellite observations of precipitation. J. Atmos. Oceanic Technol., 16 , 19491957.

    • Search Google Scholar
    • Export Citation
  • Ha, E., G. R. North, C. Yoo, and K. Ha, 2002: Evaluation of some ground truth designs for satellite estimates of rainfall rate. J. Atmos. Oceanic Technol., 19 , 6573.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., K-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43 , 18341852.

    • Search Google Scholar
    • Export Citation
  • Hsu, K-L., X. Gao, and S. Sorooshian, 2002: Rainfall estimation using cloud texture classification mapping. Proc. First IPWG Workshop, Madrid, Spain. [Available online at http://www.isac.cnr.it/~ipwg/meetings/madrid/pdf/hsu.pdf].

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arking, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487503.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14 , 20542068.

    • Search Google Scholar
    • Export Citation
  • Kerrache, M., and J. Schmetz, 1988: A precipitation index from the ESOC climatological data set. ESA J., 12 , 379383.

  • Kidd, C., 2001: Satellite rainfall climatology: A review. Int. J. Climatol., 21 , 10411066.

  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

  • King, M. D., S-C. Tsay, S. E. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. NASA ATBD, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and T. Nauss, 2005: Satellite-based retrieval of ice cloud properties using a semianalytical algorithm. J. Geophys. Res., 110 , D19206. doi:10.1029/2004JD005744.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and T. Nauss, 2006: Reflection and transmission of solar light by clouds: Asymptotic theory. Atmos. Chem. Phys., 6 , 55375545.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., V. V. Rozanov, P. E. Zege, H. Bovensmann, and J. P. Burrows, 2003: A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region. J. Geophys. Res., 108 , 4008. doi:10.1029/2001JD001543.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Kurino, T., 1997: A satellite infrared technique for estimating ‘deep/shallow’ precipitation. Adv. Space Res., 19 , 511514.

  • Lensky, I. M., and D. Rosenfeld, 1997: Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data. J. Appl. Meteor., 36 , 234242.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2003a: A night-rain delineation algorithm for infrared satellite data based on microphysical considerations. J. Appl. Meteor., 42 , 12181226.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2003b: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds at nighttime. J. Appl. Meteor., 42 , 12271233.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., 2003: Satellite rainfall estimations: New perspectives for meteorology and climate from the EURAINSAT project. Ann. Geophys., 46 , 363372.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., F. Porcù, and F. Prodi, 1990: Operational rainfall estimation using METEOSAT infrared imagery: An application in Italy’s Arno river basin—Its potential and drawbacks. ESA J., 14 , 313323.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipitation estimations from geostationary orbit and prospects for Meteosat Second Generation. Meteor. Appl., 8 , 2341.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., R. Amorati, and F. Meneguzzo, 2002: A review of satellite based rainfall estimation methods. European Commission Project MUSIC Rep. EVK1-CT-2000-00058, 66 pp. [Available online at http://www.isac.cnr.it/~meteosat/pub.shtml].

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., and G. D. Wittman, 1979: Parameterization of the radiative properties of clouds. J. Atmos. Sci., 36 , 12611273.

  • Lovejoy, S., and G. L. Austin, 1979: The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmos.–Ocean, 17 , 7792.

    • Search Google Scholar
    • Export Citation
  • Menz, G., and A. Zock, 1997: Regionalization of precipitation models in east Africa using Meteosat data. Int. J. Climatol., 17 , 10111027.

    • Search Google Scholar
    • Export Citation
  • Morissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995: The uncertainty of simple spatial averages using rain gauge networks. Water Resour. Res., 31 , 20112017.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52 , 40434059.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2006: Discriminating raining from non-raining clouds in mid-latitudes using multispectral satellite data. Atmos. Chem. Phys., 6 , 50315036.

    • Search Google Scholar
    • Export Citation
  • Nauss, T., and A. A. Kokhanovsky, 2007: Assignment of rainfall confidence values using multispectral satellite data at mid-latitudes: First results. Adv. Geosci., 10 , 99102.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1993: An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteor., 32 , 357373.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, and J. P. Wetzel, 1984: Rain estimation from satellites: An examination of the Griffith-Woodley Technique. J. Climate Appl. Meteor., 23 , 102116.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, F., C. H. Wash, M. Stewart, and C. E. Motell, 1990: Rain estimation from infrared and visible GOES satellite data. J. Appl. Meteor., 29 , 209223.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: The status of satellite-based rainfall estimation over land. Remote Sens. Environ., 51 , 125137.

  • Platnick, S., 2001: A superposition technique for deriving mean photon scattering statistics in plane-parallel cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 68 , 5773.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Pompei, A., M. Marrocu, P. Boi, and G. Dalu, 1995: Validation of retrieval algorithms for the infrared remote sensing of precipitation with the Sardinian gauge network data. Nuovo Cimento, 18 , 483496.

    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., G. Elsaesser, and C. Kummerow, 2009: A combined multisensor optimal estimation retrieval algorithm for oceanic warm rain clouds. J. Appl. Meteor. Climatol., 48 , 22422256.

    • Search Google Scholar
    • Export Citation
  • Reiss, M., H. Hausschid, B. Rudolf, and U. Schneider, 1992: Die Behandlung des systematischen Fehlers bei Niederschlagsmessungen. Meteor. Z., 1 , 5158.

    • Search Google Scholar
    • Export Citation
  • Reudenbach, C., 2003: Konvektive Sommernieschläge in Mitteleuropa. Eine Kombination aus Satellitenfernerkundung und numerischer Modellierung zur automatischen Erfassung mesoskaliger Niederschlagsfelder. Bonner Geographische Abhandlungen, 109, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Reudenbach, C., T. Nauss, J. Cermak, M. Dobbermann, J. Bendix, W. Theissen, P. Scheidgen, and O. Harmann, 2004: An integrated receiving and processing unit for MSG, NOAA and Terra/Aqua data. Proc. Meteorological Satellite Users’ Conf., Weimar, Germany, EUMETSAT, 291–297.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Roebeling, R. A., and I. Holleman, 2009: SEVIRI rainfall retrieval and validation using weather radar observations. J. Geophys. Res., 114 , D21202. doi:10.1029/2009JD012102.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111 , D20210. doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., H. M. Deneke, and A. J. Feijt, 2008: Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteor. Climatol., 47 , 206222.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79 , 24572476.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18 , 10371051.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64 , 37423765.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33 , 212229.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008a: Delineation of raining from non-raining clouds during nighttime using Meteosat-8 data. Meteor. Appl., 15 , 219230.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008b: Discriminating raining from non-raining cloud areas at mid-latitudes using Meteosat Second Generation SEVIRI day-time data. Atmos. Chem. Phys., 8 , 19.

    • Search Google Scholar
    • Export Citation
  • Thies, B., T. Nauss, and J. Bendix, 2008c: Precipitation process and rainfall intensity differentiation using Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager Data. J. Geophys. Res., 113 , D23206. doi:10.1029/2008JD010464.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., E. C. Barrett, M. J. Beaumont, and T. J. Bellerby, 1999: Estimation of daily rainfall over the upper Nile river basin using a continuously calibrated satellite infrared technique. Meteor. Appl., 6 , 201210.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., 1987: Determining rainfall intensity and type from GOES imagery in the midlatitudes. Remote Sens. Environ., 21 , 2936.

  • Tsonis, A. A., and G. A. Isaac, 1985: On a new approach for instantaneous rain area delineation in the midlatitudes using GOES data. J. Climate Appl. Meteor., 24 , 12081218.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 18831898.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., J. C. Davenport, and R. A. Scofield, 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23 , 221230.

    • Search Google Scholar
    • Export Citation
  • Wei, C., W-C. Hung, and K-S. Cheng, 2006: A multi-spectral spatial convolution approach of rainfall forecasting using weather satellite imagery. Adv. Space Res., 37 , 747753.

    • Search Google Scholar
    • Export Citation
  • Weng, F. W., L. Zhao, R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit (AMSU) cloud and precipitation algorithms. Radio Sci., 38 , 80688083.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., and Coauthors, 1994: Algorithms for the retrieval of rainfall from passive microwave measurements. Remote Sens. Rev., 11 , 163194.

    • Search Google Scholar
    • Export Citation
  • Wu, R., J. A. Weinman, and R. T. Chin, 1985: Determination of rainfall rates from GOES satellite images by a pattern recognition technique. J. Atmos. Oceanic Technol., 2 , 314330.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., 1979: An application of a geostationary satellite rain estimation technique to an extra-tropical area. J. Appl. Meteor., 18 , 16401648.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34 , 11431160.

    • Search Google Scholar
    • Export Citation
  • Yan, H., and S. Yang, 2007: A MODIS dual spectral rain algorithm. J. Appl. Meteor. Climatol., 46 , 13051323.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7525 6403 108
PDF Downloads 381 72 10