High-Repetition Millimeter-Wave Passive Remote Sensing of Humidity and Hydrometeor Profiles from Elliptical Orbit Constellations

Frank S. Marzano Department of Electronic Engineering, Sapienza University of Rome, Rome, and Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy

Search for other papers by Frank S. Marzano in
Current site
Google Scholar
PubMed
Close
,
Domenico Cimini Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy

Search for other papers by Domenico Cimini in
Current site
Google Scholar
PubMed
Close
,
Tommaso Rossi Department of Electronic Engineering, University of Rome, Rome, Italy

Search for other papers by Tommaso Rossi in
Current site
Google Scholar
PubMed
Close
,
Daniele Mortari Department of Aerospace Engineering, Texas A&M University, College Station, Texas

Search for other papers by Daniele Mortari in
Current site
Google Scholar
PubMed
Close
,
Sabatino Di Michele European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Sabatino Di Michele in
Current site
Google Scholar
PubMed
Close
, and
Peter Bauer European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential of an elliptical-orbit Flower Constellation of Millimeter-Wave Radiometers (FLORAD) for humidity profile and precipitating cloud observations is analyzed and discussed. The FLORAD mission scientific requirements are aimed at the retrieval of hydrological properties of the troposphere, specifically water vapor, cloud liquid content, rainfall, and snowfall profiles. This analysis is built on the results already obtained in previous works and is specifically devoted to evaluate the possibility of (i) deploying an incremental configuration of a Flower constellation of six minisatellites, optimized to provide the maximum revisit time over the Mediterranean area or, more generally, midlatitudes (between ±35° and ±65°); and (ii) evaluating in a quantitative way the accuracy of a one-dimensional variational data assimilation (1D-Var) Bayesian retrieval scheme to derive hydrometeor profiles at quasi-global scale using an optimized set of millimeter-wave frequencies. The obtained results show that a revisit time over the Mediterranean area (latitude 25° 45′, longitude −10° 35′°) of less than about 1 and 0.5 h can be obtained with four satellites and six satellites in Flower elliptical orbits, respectively. The accuracy of the retrieved hydrometeor profiles over land and sea for a winter and summer season at several latitudes shows the beneficial performance from using a combination of channels at 89, 118, 183, and 229 GHz. A lack of lower frequencies, such as those below 50 GHz, reduces the sounding capability for cloud lower layers, but the temperature and humidity retrievals provide a useful hydrometeor profile constraint. The FLORAD mission is fully consistent with the Global Precipitation Mission (GPM) scope and may significantly increase its space–time coverage. The concept of an incremental Flower constellation can ensure the flexibility to deploy a spaceborne system that achieves increasing coverage through separate launches of member spacecrafts. The choice of millimeter-wave frequencies provides the advantage of designing compact radiometers that comply well with the current technology of minisatellites (overall weight less than 500 kg). The overall budget of the FLORAD small mission might become appealing as an optimal compromise between retrieval performances and system complexity.

Corresponding author address: Frank S. Marzano, Dept. of Electronic Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy. Email: marzano@die.uniroma1.it

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

The potential of an elliptical-orbit Flower Constellation of Millimeter-Wave Radiometers (FLORAD) for humidity profile and precipitating cloud observations is analyzed and discussed. The FLORAD mission scientific requirements are aimed at the retrieval of hydrological properties of the troposphere, specifically water vapor, cloud liquid content, rainfall, and snowfall profiles. This analysis is built on the results already obtained in previous works and is specifically devoted to evaluate the possibility of (i) deploying an incremental configuration of a Flower constellation of six minisatellites, optimized to provide the maximum revisit time over the Mediterranean area or, more generally, midlatitudes (between ±35° and ±65°); and (ii) evaluating in a quantitative way the accuracy of a one-dimensional variational data assimilation (1D-Var) Bayesian retrieval scheme to derive hydrometeor profiles at quasi-global scale using an optimized set of millimeter-wave frequencies. The obtained results show that a revisit time over the Mediterranean area (latitude 25° 45′, longitude −10° 35′°) of less than about 1 and 0.5 h can be obtained with four satellites and six satellites in Flower elliptical orbits, respectively. The accuracy of the retrieved hydrometeor profiles over land and sea for a winter and summer season at several latitudes shows the beneficial performance from using a combination of channels at 89, 118, 183, and 229 GHz. A lack of lower frequencies, such as those below 50 GHz, reduces the sounding capability for cloud lower layers, but the temperature and humidity retrievals provide a useful hydrometeor profile constraint. The FLORAD mission is fully consistent with the Global Precipitation Mission (GPM) scope and may significantly increase its space–time coverage. The concept of an incremental Flower constellation can ensure the flexibility to deploy a spaceborne system that achieves increasing coverage through separate launches of member spacecrafts. The choice of millimeter-wave frequencies provides the advantage of designing compact radiometers that comply well with the current technology of minisatellites (overall weight less than 500 kg). The overall budget of the FLORAD small mission might become appealing as an optimal compromise between retrieval performances and system complexity.

Corresponding author address: Frank S. Marzano, Dept. of Electronic Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy. Email: marzano@die.uniroma1.it

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Abdelkhalik, O., D. Mortari, and K. J. Park, 2005: Satellite constellation design for Earth observation. Proc. 15th Space Flight Mechanics Meeting, Copper Mountain, CO, AAS/AIAA, AAS 05-148.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86 , 387402.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., and A. Mugnai, 2003: Precipitation profile retrievals using temperature-sounding microwave observations. J. Geophys. Res., 108 , 4730. doi:10.1029/2003JD003572.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., and S. Di Michele, 2007: Mission requirements for a post-EPS microwave radiometer. Post-EPS EUMETSAT Contract EUM/CO/06/1510/PS, Study Rep., 70 pp.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, 2006a: Implementation of 1D+4D-Var assimilation of precipitation affected microwave radiances at ECMWF, Part I: 1D-Var. Quart. J. Roy. Meteor. Soc., 132 , 22772306.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., E. Moreau, F. Chevallier, and U. O’Keefe, 2006b: Multiple-scattering microwave radiative transfer for data assimilation applications. Quart. J. Roy. Meteor. Soc., 132 , 12591281.

    • Search Google Scholar
    • Export Citation
  • Bizzarri, B., A. J. Gasiewski, and D. H. Staelin, 2007: Observing rain by millimetre-submillimetre wave sounding from geostationary orbit. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 675–692.

    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., F. Z. Weng, and Q. H. Liu, 2007: Passive microwave remote sensing of extreme weather events using NOAA-18 AMSUA and MHS. Trans. Geosci. Remote Sens., 45 , 22282246.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359 , 373380.

  • Deblonde, G., and S. J. English, 2003: One-dimensional variational retrievals from SSMI/S simulated observations. J. Appl. Meteor., 42 , 14061420.

    • Search Google Scholar
    • Export Citation
  • Di Michele, S., and P. Bauer, 2006: Passive microwave radiometer channel selection based on precipitation information content estimation. Quart. J. Roy. Meteor. Soc., 132 , 12991323.

    • Search Google Scholar
    • Export Citation
  • Ellison, W. J., and Coauthors, 2003: A comparison of ocean emissivity models using the Advanced Microwave Sounding Unit, the Special Sensor Microwave Imager, the TRMM Microwave Imager, and airborne radiometer observations. J. Geophys. Res., 108 , 4663. doi:10.1029/2002JD003213.

    • Search Google Scholar
    • Export Citation
  • English, S. J., U. O’Keefe, and M. Sharpe, 2006: The assimilation of cloud affected AMSU-A radiances. Proc. XV Int. TOVS Study Conf., Maratea, Italy, 447–454.

    • Search Google Scholar
    • Export Citation
  • Gasiewski, A. J., and D. H. Staelin, 1990: Numerical modeling of passive microwave O2 observations over precipitation. Radio Sci., 25 , 217235.

    • Search Google Scholar
    • Export Citation
  • Gerard, E., and R. Saunders, 1999: Four dimensional variational assimilation of Special Sensor Microwave Imager total column water vapour in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125 , 30773101.

    • Search Google Scholar
    • Export Citation
  • Gilbert, J. C., and C. Lemarechal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. J. Math. Program., 45 , 407435.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and P. Lionello, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63 , 90104.

  • Grody, N. C., 1988: Surface identification using satellite microwave radiometers. Trans. Geosci. Remote Sens., 26 , 850859.

  • Hinsman, D. E., and J. F. W. Purdom, 2007: The space-based component of the world weather watch’s Global Observing System (GOS). Measuring Precipitation from Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 561–570.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. Michaeleidis, Ed., Springer, 131–164.

    • Search Google Scholar
    • Export Citation
  • Karbou, F., 2005: Two microwave land emissivity parameterizations suitable for AMSU observations. Trans. Geosci. Remote Sens., 43 , 17881795.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1990: On the use of satellites in Molniya orbits for meteorological observations of middle and high latitudes. J. Atmos. Oceanic Technol., 7 , 517522.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology: An Introduction. Academic Press, 466 pp.

  • Kidder, S. Q., M. D. Goldberg, R. M. Zehr, M. De Maria, J. F. W. Purdom, C. Velden, N. C. Grody, and S. J. Kusselson, 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit. Bull. Amer. Meteor. Soc., 81 , 12411259.

    • Search Google Scholar
    • Export Citation
  • Lambrigtsen, B., A. Tanner, T. Gaier, P. Kangaslahti, and S. Brown, 2007: Prototyping GeoSTAR for the PATH Mission. Proc. Science Technology Conf., Adelphi, MD, NASA, 19–21.

    • Search Google Scholar
    • Export Citation
  • Leslie, R. V., and D. Staelin, 2004: NPOESS aircraft sounder testbed – M: Observations of clouds and precipitation at 54, 188, 183 and 425 GHZ. Trans. Geosci. Remote Sens., 42 , 22402247.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, J. L. Wang, T. L. Delworth, K. W. Dixon, and A. J. Broccoli, 2001: Anthropogenic warming of Earth’s climate system. Science, 292 , 267270.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., M. V. Struglia, N. Zeng, and K. M. Lau, 2002: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15 , 16741690.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., M. Palmacci, G. Giuliani, D. Cimini, and J. Turk, 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. Trans. Geosci. Remote Sens., 42 , 10181032.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., and Coauthors, 2008: FLORAD: Micro-satellite Flower Constellation of Millimeter-wave Radiometers for Atmospheric Remote Sensing. Proc. MicroRad08, Florence, Italy, DOI:10.1109/MICRAD.2008.4579470.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., and Coauthors, 2009: Flower Constellation of Millimeter-wave Radiometers for tropospheric monitoring at pseudo-geostationary scale. Trans. Geosci. Remote Sens., 47 , 31073122.

    • Search Google Scholar
    • Export Citation
  • Matricardi, M., F. Chevallier, G. Kelly, and J-N. Thepaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130 , 153173.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., 2007: The evolution of the NOAA satellite platforms. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 587–600.

    • Search Google Scholar
    • Export Citation
  • Mortari, D., and M. P. Wilkins, 2008: Flower constellation set theory. Part I: Compatibility and phasing. Trans. Aerosp. Electron. Syst., 44 , 953962.

    • Search Google Scholar
    • Export Citation
  • Mortari, D., M. P. Wilkins, and C. Bruccoleri, 2004: The Flower Constellations. J. Astronaut. Sci., 52 , 107127.

  • Mugnai, A., and Coauthors, 2007: Snowfall measurements by proposed European GPM Mission. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 655–674.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C., and P. Bauer, 2007: Assimilation of precipitation-affected SSMI/S radiances over land in the ECMWF data assimilation system. EUMETSAT Hydro SAF Rep., 51 pp.

    • Search Google Scholar
    • Export Citation
  • Pelino, V., A. Matera, T. Colombo, and F. Giorgi, 2006: Validation of precipitation events in a regional climate model simulation using methods from complexity theory. Theor. Appl. Climatol., 84 , 213218.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., R. Iacovazzi Jr., J-M. Yoo, and G. Dalu, 2000: Global warming: Estimation from satellite observations. Geophys. Res. Lett., 27 , 35173520.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., W. B. Rossow, and E. Matthews, 1997: Microwave land surface emissivities estimated from SSM/I observations. J. Geophys. Res., 102 , 867890.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14 , 609624.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1996: Information content and optimisation of high spectral resolution measurements. Optimal Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2830), 136–147.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 2001: Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. Trans. Geosci. Remote Sens., 39 , 24292435.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., P. Brunel, F. Chevallier, G. Deblonde, S. J. English, M. Matricardi, and P. Rayer, 2001: RTTOV-7 science and validation report. Met Office Forecasting and Research Tech. Rep. 387, 51 pp.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., P. Phillips, C. Accadia, R. Munro, S. Banfi, J. Wilson, and L. Sarlo, 2008: Post-EPS mission requirements document. EUMETSAT Doc. EUM/PEPS/REQ/06/0043, 189 pp.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., D. Klaes, A. Ratier, and R. Stuhlmann, 2007: The Meteosat and EPS/Meteop satellite series. Measuring precipitation from space. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 571–586.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 2007: International Global Precipitation Measurement (GPM) Program and Mission: An overview. Measuring Precipitation From Space, V. Levizzani, P. Bauer, and J. F. Turk, Eds., Advances in Global Change Research Series, Vol. 28, Springer, 611–653.

    • Search Google Scholar
    • Export Citation
  • Staelin, D. H., and C. Surussavadee, 2007: Precipitation retrieval accuracies for geo-microwave sounders. Trans. Geosci. Remote Sens., 45 , 31503159.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and D. H. Staelin, 2008a: Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, Part I: Retrieval design. Trans. Geosci. Remote Sens., 46 , 99108.

    • Search Google Scholar
    • Export Citation
  • Surussavadee, C., and D. H. Staelin, 2008b: Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, Part II: Performance evaluation. Trans. Geosci. Remote Sens., 46 , 109118.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., C. Kidd, V. Levizzani, and F. S. Marzano, 2004: A neural networks-based PMW-IR fusion technique to derive half-hourly rainfall estimates at 0.1° resolution. J. Appl. Meteor., 43 , 576594.

    • Search Google Scholar
    • Export Citation
  • Wertz, J. R., and W. J. Larson, 1999: Space Mission Analysis and Design. 3rd ed. Kluwer Academic, 969 pp.

  • Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. Lettenmaier, 2003: Detection and intensitification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. J. Climate, 16 , 535547.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9412 8477 81
PDF Downloads 185 63 10