• Böhm, U., M. Kücken, W. Ahrens, A. Block, D. Hauffe, K. Keuler, B. Rockel, and A. Will, 2006: CLM—The climate version of LM: Brief description and long-term applications. COSMO Newsletter, No. 6, COSMO, 225–235. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_clm.pdf].

    • Search Google Scholar
    • Export Citation
  • Brandsma, T., G. P. Können, and H. R. A. Wessels, 2003: Empirical estimation of the effect of urban heat advection on the temperature series of De Bilt (The Netherlands). Int. J. Climatol., 23 , 829845. doi:10.1002/joc.902.

    • Search Google Scholar
    • Export Citation
  • Bundesministerium für Raumordnung, Bauwesen und Städtebau (BMBau), 1980: Wechselwirkung zwischen der Siedlungsstruktur und Wärmeversorgungssystemen (Interaction between settlement structure and heat supply systems). Schriftenreihe Raumordnung, Forschungsprojekt BMBau RS II 4–70 41 02–77.10, 270 pp.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schättler, 2002: A description of the non-hydrostatic regional model LM. Part I: Dynamics and numerics. Deutscher Wetterdienst Tech. Rep. LM_F90 2.18, 140 pp. [Available online at http://cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf].

    • Search Google Scholar
    • Export Citation
  • Doms, G., J. Förstner, E. Heise, H-J. Herzog, M. Raschendorfer, R. Schrodin, T. Rheinhardt, and G. Vogel, 2005: A description of the non-hydrostatic regional model LM. Part II: Physical parameterization. Deutscher Wetterdienst Tech. Rep. LM_F90 3.20, 146 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf].

    • Search Google Scholar
    • Export Citation
  • Enke, W., T. Deutschländer, F. Schneider, and W. Küchler, 2005: Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteor. Z., 14 , 247257.

    • Search Google Scholar
    • Export Citation
  • Farber, O., and R. Kadmon, 2003: Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol. Modell., 160 , 115130.

    • Search Google Scholar
    • Export Citation
  • Fujibe, F., 2009: Urban warming in Japanese cities and its relation to climate change monitoring. Proc. Seventh Int. Conf. on Urban Climate, Yokohama, Japan, International Association on Urban Climate, 4 pp. [Available online at http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/ICUC_ple7_fujibe_new.pdf].

    • Search Google Scholar
    • Export Citation
  • Giridharan, R., S. S. Y. Lau, and S. Ganesan, 2005: Nocturnal heat island effect in urban residential developments of Hong Kong. Energy Build., 37 , 964971.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., K. Arpe, and E. Roeckner, 2006: Evaluation of the hydrological cycle in the ECHAM5 model. J. Climate, 19 , 38103827.

  • Hart, M. A., and D. J. Sailor, 2009: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol., 95 , 397406. doi:10.1007/s00704-008-0017-5.

    • Search Google Scholar
    • Export Citation
  • Hollweg, H-D., and Coauthors, 2008: Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Max Planck Institute for Meteorology Model and Data Group Tech. Rep. 3, 141 pp.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteor. Atmos. Phys., 77 , 6173.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., H. Göttel, S. Kotlarski, P. Lorenz, and K. Sieck, 2008: Klimaauswirkungen und Anpassung in Deutschland—Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. (Climate impact and adaption in Germany—Phase 1: Compilation of regional climate scenarios for Germany). Tech. Rep. Umwelt Abschlussbericht zum UFOPLAN-Vorhaben 204 41 138, 11, UBA-Reihe Climate Change, Dessau, 154 pp.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., D. P. Rowell, R. G. Jones, and E. Buonomo, 2008: Robustness of future changes in local precipitation extremes. J. Climate, 21 , 42804297.

    • Search Google Scholar
    • Export Citation
  • Mills, G., 2006: Progress toward sustainable settlements: A role for urban climatology. Theor. Appl. Climatol., 84 , 6976.

  • Möller, F., 1954: Ein Kurzverfahren zur Bestimmung der langwelligen Ausstrahlung dicker Atmosphärenschichten (Quick method to determine long-wave emission for optically thick layers). Arch. Meteor. Geophys. Bioklimatol., 7 , 158169.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds. 2000: IPCC Special Report on Emissions Scenarios: Summary for policymakers. Cambridge University Press, 20 pp. [Available online at http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf].

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2d ed. Routledge, 464 pp.

  • Orlowsky, B., F-W. Gerstengarbe, and P. C. Werner, 2008: A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor. Appl. Climatol., 92 , (3–4). 209223.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19 , 37713791.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub)tropical regions. Int. J. Climatol., 27 , 18591873.

  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427 , 332336.

    • Search Google Scholar
    • Export Citation
  • Siebert, J., U. Sievers, and W. Zdunkowski, 1992: A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Bound.-Layer Meteor., 59 , 134.

    • Search Google Scholar
    • Export Citation
  • Sievers, U., 1995: Verallgemeinerung der Stromfunktionsmethode auf drei Dimensionen (Generalization of the streamfunction–vorticity method to three dimensions). Meteor. Z., 3 , 315.

    • Search Google Scholar
    • Export Citation
  • Sievers, U., and W. Zdunkowski, 1986: A microscale urban climate model. Contrib. Atmos. Phys., 59 , 1340.

  • Sievers, U., R. Forkel, and W. Zdunkowski, 1983: Transport equations for heat and moisture in the soil and their application to boundary layer problems. Contrib. Atmos. Phys., 56 , 5883.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Souch, C., and C. S. B. Grimmond, 2004: Applied climatology: ‘Heat waves.’. Prog. Phys. Geogr., 28 , 599606.

  • Spronken-Smith, R. A., and T. R. Oke, 1998: The thermal regime of urban parks in two cities with different summer climate. Int. J. Remote Sens., 19 , 20852104.

    • Search Google Scholar
    • Export Citation
  • Stone, B., and J. Norman, 2006: Land use planning and surface heat island formation: A parcel-based radiation flux approach. Atmos. Environ., 40 , 35613573.

    • Search Google Scholar
    • Export Citation
  • Verein Deutscher Ingenieure (VDI), 1994: Umweltmeteorologie–Wechselwirkung zwischen Atmosphäre und Oberflächen—Berechnung der kurz- und langwelligen Strahlung (Environmental meteorology–interaction between atmosphere and surfaces—Computation of short- and longwave radiation). VDI-Richtlinie 3789 Blatt 2, Beuth-Verlag, Berlin, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2003: Past and projected trends in London’s urban heat island. Weather, 58 , 251260.

  • Zdunkowski, W. G., J. Paegle, and J. Reilly, 1975: The effect of soil moisture upon the atmospheric and soil temperature near the air–soil interface. Arch. Meteor. Geophys. Bioklimatol., 24 , 245268.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 48
PDF Downloads 25 25 25

Estimation of Climate-Change Impacts on the Urban Heat Load Using an Urban Climate Model and Regional Climate Projections

Restricted access

Abstract

A pragmatic approach to estimate the impact of climate change on the urban environment, here called the cuboid method, is presented. This method allows one to simulate the urban heat load and the frequency of air temperature threshold exceedances using only eight microscale urban climate simulations for each relevant wind direction and time series of daily meteorological parameters either from observations or regional climate projections. Eight representative simulations are designed to encompass all major potential urban heat-stress conditions. From these representative simulations, the urban-heat-load conditions in any weather situation are derived by interpolation. The presented approach is applied to study possible future heat load in Frankfurt, Germany, using the high-resolution Microscale Urban Climate Model in three dimensions (MUKLIMO_3). To estimate future changes in heat-load-related climate indices in Frankfurt, climate projections from the regional climate models Max Planck Institute Regional Model (REMO), Climate Limited-Area Model (CLM), Wetterlagen-basierte Regionalisierungsmethode (WETTREG), and Statistical Regional Model (STAR) are used. These regional climate models are driven by the “ECHAM5” general circulation model and Intergovernmental Panel on Climate Change emission scenario A1B. For the mean annual number of days with a maximum daily temperature exceeding 25°C, a comparison between the cuboid method results from observed and projected regional climate time series of the period 1971–2000 shows good agreement, except for CLM for which a clear underestimation is found. On the basis of the 90% significance level of all four regional climate models, the mean annual number of days with a maximum daily temperature exceeding 25°C in Frankfurt is expected to increase by 5–32 days for 2021–50 as compared with 1971–2000.

Corresponding author address: Barbara Früh, Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany. Email: barbara.frueh@dwd.de

Abstract

A pragmatic approach to estimate the impact of climate change on the urban environment, here called the cuboid method, is presented. This method allows one to simulate the urban heat load and the frequency of air temperature threshold exceedances using only eight microscale urban climate simulations for each relevant wind direction and time series of daily meteorological parameters either from observations or regional climate projections. Eight representative simulations are designed to encompass all major potential urban heat-stress conditions. From these representative simulations, the urban-heat-load conditions in any weather situation are derived by interpolation. The presented approach is applied to study possible future heat load in Frankfurt, Germany, using the high-resolution Microscale Urban Climate Model in three dimensions (MUKLIMO_3). To estimate future changes in heat-load-related climate indices in Frankfurt, climate projections from the regional climate models Max Planck Institute Regional Model (REMO), Climate Limited-Area Model (CLM), Wetterlagen-basierte Regionalisierungsmethode (WETTREG), and Statistical Regional Model (STAR) are used. These regional climate models are driven by the “ECHAM5” general circulation model and Intergovernmental Panel on Climate Change emission scenario A1B. For the mean annual number of days with a maximum daily temperature exceeding 25°C, a comparison between the cuboid method results from observed and projected regional climate time series of the period 1971–2000 shows good agreement, except for CLM for which a clear underestimation is found. On the basis of the 90% significance level of all four regional climate models, the mean annual number of days with a maximum daily temperature exceeding 25°C in Frankfurt is expected to increase by 5–32 days for 2021–50 as compared with 1971–2000.

Corresponding author address: Barbara Früh, Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany. Email: barbara.frueh@dwd.de

Save