• Adler, J., 2010: R in a Nutshell. O’Reilly Media, 611 pp.

  • Allen, L., F. Lindberg, and C. S. B. Grimmond, 2010: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., in press, doi:10.1002/joc.2210.

    • Search Google Scholar
    • Export Citation
  • Baklanov, A., J. Ching, C. S. B. Grimmond, and A. Martilli, 2009: Model urbanization strategies: Summaries, recommendations and requirements. Urbanization of Meteorological and Air Quality Models, A. Baklanov et al., Eds., Springer-Verlag, 151–162.

    • Search Google Scholar
    • Export Citation
  • Bradley, E., T. Hastie, I. Johnstone, and R. Tibshirani, 2004: Least angle regression. Ann. Stat., 32 , 407499. doi:10.1214/009053604000000067.

    • Search Google Scholar
    • Export Citation
  • Cimorelli, A. J., and Coauthors, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44 , 682693.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1981: LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Stat., 35 , 54.

  • Crawford, T. M., and C. E. Duchon, 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38 , 474480.

    • Search Google Scholar
    • Export Citation
  • de Bruin, H. A. R., and A. A. M. Holtslag, 1982: A simple parameterization of surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J. Appl. Meteor., 21 , 16101621.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., C. Munkel, S. Vogt, W. J. Muller, and K. Schäfer, 2004: Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometers measurements. Atmos. Environ., 34 , 273286.

    • Search Google Scholar
    • Export Citation
  • Eresmaa, N., A. Karppinen, S. M. Joffre, J. Rasanen, and H. Talvitie, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6 , 14851493.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., 2009: Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett., 36 , L02801. doi:10.1029/2008GL036465.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evaporation–interception model for urban areas. Water Resour. Res., 27 , 17391755.

  • Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: Observations and evaluation of a simple model. J. Appl. Meteor., 38 , 922940.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). J. Appl. Meteor., 41 , 792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H. A. Cleugh, and T. R. Oke, 1991: An objective urban heat storage model and its comparison with other schemes. Atmos. Environ., 25B , 311326.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., B. D. Offerle, J. Hom, and D. Golub, 2002: Observation of local-scale heat, water, momentum and CO2 fluxes at Cub Hill, Baltimore. Preprints, Fourth Urban Environment Symp., Norfolk, VA, Amer. Meteor. Soc., 10.6. [Available online at http://ams.confex.com/ams/pdfpapers/37022.pdf].

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010a: Initial results from phase 2 of the International Urban Energy Balance Comparison. Int. J. Climatol., in press, doi:10.1002/joc.2227.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and Coauthors, 2010b: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49 , 12681292.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and A. P. van Ulden, 1983: A simple scheme for daytime estimates of the surface fluxes from routine weather data. J. Climate Appl. Meteor., 22 , 517529.

    • Search Google Scholar
    • Export Citation
  • Kastner-Klein, P., and M. W. Rotach, 2004: Mean flow and turbulence characteristics in an urban roughness sublayer. Bound.-Layer Meteor., 111 , 5584.

    • Search Google Scholar
    • Export Citation
  • Kikegawa, Y., Y. Genshi, H. Yoshikado, and H. Kondo, 2003: Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings’ energy demands. Appl. Energy, 76 , 449466.

    • Search Google Scholar
    • Export Citation
  • Klysik, K., 1996: Spatial and seasonal distribution of anthropogenic heat emissions in Łódź, Poland. Atmos. Environ., 30 , 33973404.

    • Search Google Scholar
    • Export Citation
  • Klysik, K., and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ., 33 , 38853895.

    • Search Google Scholar
    • Export Citation
  • Lindberg, F., B. Holmer, and S. Thorsson, 2008: SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeor., 52 , 697713.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parameterization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136 , 9971019. doi:10.1002/qj.614.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2006: Urban surface modelling and the meso-scale impact of cities. Theor. Appl. Climatol., 84 , 3545.

  • McCaughey, H., 1985: Energy balance storage terms in a mature mixed forest at Petawawa Ontario—A case study. Bound.-Layer Meteor., 31 , 89101.

    • Search Google Scholar
    • Export Citation
  • Meyn, S. K., and T. R. Oke, 2009: Heat fuxes through roofs and their relevance to estimates of urban heat storage. Energy Build., 41 , 745752.

    • Search Google Scholar
    • Export Citation
  • NCDC, cited. 2009: National Climatic Data Center. [Available online at http://www.ncdc.noaa.gov/oa/ncdc.html].

  • Offerle, B., 2003: The energy balance of an urban area: Examining temporal and spatial variability through measurements, remote sensing and modelling. Ph.D. thesis, Indiana University, 218 pp.

  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42 , 11571173.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and K. Fortuniak, 2005: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city center. Int. J. Climatol., 25 , 14051419. doi:10.1002/joc.1198.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, K. Klysik, and T. R. Oke, 2006: Temporal variations in heat fluxes over a central European city centre. Theor. Appl. Climatol., 84 , 103116.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. Routledge, 435 pp.

  • Perry, S. G., 1992: CTDMPLUS: A dispersion model for sources in complex topography. Part I: Technical formulations. J. Appl. Meteor., 31 , 633645.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., D. Legain, P. Durand, and V. Masson, 2007: Anthropogenic heat releases in an old European agglomeration (Toulouse, France). Int. J. Climatol., 27 , 19691981.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122 , 11271151.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38 , 27372748.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67 , 293318.

  • Smith, W. L., 1966: Note on the relationship between total precipitable water and surface dewpoint. J. Appl. Meteor., 5 , 726727.

  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38 , 466473.

    • Search Google Scholar
    • Export Citation
  • Vaisala Oyj, 2006: Vaisala Ceilometer CL31 user’s guide. Vaisala Oyj, Helsinki, Finland, 134 pp.

  • van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24 , 11961207.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 9 9 9

Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave Radiation Parameterization and Seasonality-Related Developments

View More View Less
  • 1 Department of Geography, King’s College London, London, United Kingdom
  • | 2 FluxSense, Göteborg, Sweden
  • | 3 Department of Geography, King’s College London, London, United Kingdom
  • | 4 Department of Geography, King’s College London, London, United Kingdom, and Department of Physics, University of Helsinki, Helsinki, Finland
  • | 5 Department of Geography, King’s College London, London, United Kingdom
Restricted access

Abstract

Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when using L↓ as forcing, and RMSE < 43 W m−2 for all seasons in 2002 with all other options implemented to model L↓.

* Current affiliation: Dept. of Earth Sciences, Gothenburg University, Göteborg, Sweden

Corresponding author address: Thomas Loridan, Environmental Monitoring and Modelling Group, Dept. of Geography, King’s College London, London WC2R 2LS, United Kingdom. Email: thomas.loridan@gmail.com

Abstract

Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when using L↓ as forcing, and RMSE < 43 W m−2 for all seasons in 2002 with all other options implemented to model L↓.

* Current affiliation: Dept. of Earth Sciences, Gothenburg University, Göteborg, Sweden

Corresponding author address: Thomas Loridan, Environmental Monitoring and Modelling Group, Dept. of Geography, King’s College London, London WC2R 2LS, United Kingdom. Email: thomas.loridan@gmail.com

Save