• Boccippio, D. J., W. A. Petersen, and D. J. Cecil, 2005: The tropical convective spectrum: 1. Archetypal vertical structures. J. Climate, 18 , 27442769.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128 , 26872710.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48 , 12811286.

  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133 , 543566.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., T. W. Krauss, and V. Makitov, 2005: Hail metrics using conventional radar. Preprints, 16th Conf. on Planned and Inadvertent Weather Modification, San Diego, CA, Amer. Meteor. Soc., 1.5. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_86773.htm].

    • Search Google Scholar
    • Export Citation
  • Greene, D. R., and R. A. Clark, 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100 , 548552.

  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A , 130.

    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D. H., W. E. McGovern, and R. F. Saffle, 1995: The WSR-88D severe weather potential algorithm. Wea. Forecasting, 10 , 141159.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47 , 27122728.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., M. R. Howland, and D. A. Santek, 1987: Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data. J. Climate Appl. Meteor., 26 , 749754.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18 , 15211525.

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13 , 286303.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 0 0 0

Relating Passive 37-GHz Scattering to Radar Profiles in Strong Convection

View More View Less
  • 1 University of Alabama in Huntsville, Huntsville, Alabama
Restricted access

Abstract

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and precipitation radar measurements are examined for strong convective systems. Storms having similar values of minimum 37-GHz polarization-corrected temperature (PCT) are grouped together, and their vertical profiles of maximum radar reflectivity are composited. Lower 37-GHz PCT corresponds to stronger radar profiles (high reflectivity through a deep layer), but characteristic profiles for a given 37-GHz PCT are different for deep tropical ocean, deep tropical land, subtropical ocean, and subtropical land regions. Tropical oceanic storms have a sharper decrease of reflectivity just above the freezing level than storms from other regions with the same brightness temperature. Storms from subtropical land regions have the slowest decrease of reflectivity with height and the greatest mixed-phase-layer ice water content (IWC). Linear fits of 37-GHz PCT versus IWC for each region are used to scale the brightness temperatures. Counts of storms with these scaled brightness temperatures below certain thresholds suggest that not as many of the strongest storms occur in central Africa as in subtropical parts of South America, the United States, and central Asia.

Corresponding author address: Dr. Daniel J. Cecil, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Dr. NW, Huntsville, AL 35805. Email: cecild@uah.edu

Abstract

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and precipitation radar measurements are examined for strong convective systems. Storms having similar values of minimum 37-GHz polarization-corrected temperature (PCT) are grouped together, and their vertical profiles of maximum radar reflectivity are composited. Lower 37-GHz PCT corresponds to stronger radar profiles (high reflectivity through a deep layer), but characteristic profiles for a given 37-GHz PCT are different for deep tropical ocean, deep tropical land, subtropical ocean, and subtropical land regions. Tropical oceanic storms have a sharper decrease of reflectivity just above the freezing level than storms from other regions with the same brightness temperature. Storms from subtropical land regions have the slowest decrease of reflectivity with height and the greatest mixed-phase-layer ice water content (IWC). Linear fits of 37-GHz PCT versus IWC for each region are used to scale the brightness temperatures. Counts of storms with these scaled brightness temperatures below certain thresholds suggest that not as many of the strongest storms occur in central Africa as in subtropical parts of South America, the United States, and central Asia.

Corresponding author address: Dr. Daniel J. Cecil, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Dr. NW, Huntsville, AL 35805. Email: cecild@uah.edu

Save