• Ciesielski, P. E., W. H. Schubert, and R. H. Johnson, 1999: Large-scale heat and moisture budgets over the ASTEX region. J. Atmos. Sci., 56 , 32413261.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, P. T. Haertel, and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61 , 27072721.

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2000: Rainfall and radiative heating rates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57 , 14971514.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80 , 561578.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., T. Ushiyama, K. Yoneyama, and Y. Fujiyoshi, 2008: Combined use of TRMM/PR and disdrometer data to correct reflectivity of ground-based radars. SOLA, 4 , 101104. doi:10.2151/sola.2008-026.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., R. H. Johnson, and P. E. Ciesielski, 2009: Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci., 66 , 34343448.

    • Search Google Scholar
    • Export Citation
  • Kawano, N., H. Hashiguchi, K. Yoneyama, and S. Fukao, 2009: Lower atmosphere observations over the equatorial Indian Ocean with a shipborne lower troposphere radar during MISMO field experiment. Radio Sci., 44 , RS6011. doi:10.1029/2008RS003885.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 , RG2003. doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45 , 22592275.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. E. Ciesielski, and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60 , 26972714.

  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measurement Mission (TRMM). J. Atmos. Sci., 63 , 27772794.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Miura, H., M. Satoh, and M. Katsumata, 2009: Spontaneous onset of a Madden–Julian oscillation event in a cloud-system-resolving simulation. Geophys. Res. Lett., 36 , L13802. doi:10.1029/2009GL039056.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48 , 18691884.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and D. W. Titley, 1994: Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev., 122 , 16111631.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9 , 198203.

  • Roundy, P. E., and W. M. Frank, 2004: Effects of low-frequency wave interactions on intraseasonal oscillations. J. Atmos. Sci., 61 , 30253040.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227 , 34863514.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and M. T. Masarik, 2006: Potential vorticity aspects of the MJO. Dyn. Atmos. Oceans, 42 , 127151.

  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., P. E. Ciesielski, and M. H. Zhang, 2008: Tropical cloud heating profiles: Analyses from KWAJEX. Mon. Wea. Rev., 136 , 42894300.

    • Search Google Scholar
    • Export Citation
  • Takahashi, S., F. Kondo, O. Tsukamoto, Y. Ito, S. Hirayama, and H. Ishida, 2005: On-board automated eddy flux measurement system over open ocean. SOLA, 1 , 3740. doi:10.2151/sola.2005-011.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55 , 16131627.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129 , 26772694.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., M. Fujita, N. Sato, M. Fujiwara, Y. Inai, and F. Hasebe, 2008a: Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment. SOLA, 4 , 1316.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008b: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89 , 18891903.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66 , 36213640.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, 2001: Objective analysis of the ARM IOP data: Method and sensitivity. Mon. Wea. Rev., 129 , 295311.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 1 1 1

Evaluation of Budget Analyses during MISMO

View More View Less
  • 1 Research Institute for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokosuka, Japan, and Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

Results of sounding-derived heat and moisture budgets for the Mirai Indian Ocean Cruise for the Study of the MJO Onset (MISMO) project in 2006 are evaluated using observational and simulated datasets. Estimated rainfall rates from the budget analyses agree well with both the satellite-derived products and in situ rain gauge measurements in the period leading up to the convectively active phase of the MJO. During the active phase, however, large discrepancies are found in the temporal variation of the rainfall estimates on the time scale of a few to several days. Utilizing MJO circulations simulated by the two numerical models, a linear model and a high-resolution AGCM, it is revealed that this discrepancy may result from inability of the MISMO triangular network to properly capture the divergence associated with the Rossby and/or inertia–gravity wave components of the circulation. A rectangular array is demonstrated to be superior at capturing the wind associated with these wave disturbances. Possible effects of the equatorial waves and sampling issues, which could act to enhance or suppress the error in the present case, are discussed. The reliability of the budget analyses during the preactive period is also supported by both model simulations.

Corresponding author address: Masaki Katsumata, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho 2-15, Yokosuka 237-0061, Japan. Email: katsu@jamstec.go.jp

Abstract

Results of sounding-derived heat and moisture budgets for the Mirai Indian Ocean Cruise for the Study of the MJO Onset (MISMO) project in 2006 are evaluated using observational and simulated datasets. Estimated rainfall rates from the budget analyses agree well with both the satellite-derived products and in situ rain gauge measurements in the period leading up to the convectively active phase of the MJO. During the active phase, however, large discrepancies are found in the temporal variation of the rainfall estimates on the time scale of a few to several days. Utilizing MJO circulations simulated by the two numerical models, a linear model and a high-resolution AGCM, it is revealed that this discrepancy may result from inability of the MISMO triangular network to properly capture the divergence associated with the Rossby and/or inertia–gravity wave components of the circulation. A rectangular array is demonstrated to be superior at capturing the wind associated with these wave disturbances. Possible effects of the equatorial waves and sampling issues, which could act to enhance or suppress the error in the present case, are discussed. The reliability of the budget analyses during the preactive period is also supported by both model simulations.

Corresponding author address: Masaki Katsumata, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima-cho 2-15, Yokosuka 237-0061, Japan. Email: katsu@jamstec.go.jp

Save