• Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83 , 521536.

    • Search Google Scholar
    • Export Citation
  • Baik, J-J., J-J. Kim, and H. J. S. Fernando, 2003: A CFD model for simulating urban flow and dispersion. J. Appl. Meteor., 42 , 16361648.

    • Search Google Scholar
    • Export Citation
  • Bentham, T., and R. Britter, 2003: Spatially averaged flow within obstacle arrays. Atmos. Environ., 37 , 20372043.

  • Beranek, W. J., 1979: General rules for the determination of wind environment. Proceedings of the Fifth International Conference on Wind Engineering, J. E. Cermak, Ed., Vol. 1, Pergamon Press, 225–234.

    • Search Google Scholar
    • Export Citation
  • Blevins, R. D., 1979: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, 492 pp.

  • Britter, R. E., and S. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35 , 469496.

  • Britter, R. E., and J. C. R. Hunt, 1979: Velocity measurements and order of magnitude estimates of the flow between two buildings in a simulated atmospheric boundary layer. J. Ind. Aerodyn., 4 , 165182.

    • Search Google Scholar
    • Export Citation
  • Brown, M., H. Khalsa, M. Nelson, and D. Boswell, 2004: Street canyon flow patterns in a horizontal plane: Measurements from the Joint Urban 2003 field experiment. Proc. Fifth Conf. on Urban Environment, Vancouver, BC, Amer. Meteor. Soc., 3.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, R., F. Gouveia, J. Shinn, S. Chan, D. Stevens, R. Lee, and J. Leone, 2004: Flow around a complex building: Comparisons between experiments and a Reynolds-averaged Navier–Stokes approach. J. Appl. Meteor., 43 , 696710.

    • Search Google Scholar
    • Export Citation
  • Calhoun, R., R. Heap, M. Princevac, R. Newsome, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45 , 11161126.

    • Search Google Scholar
    • Export Citation
  • Chan, A. T., W. T. W. Au, and E. S. P. So, 2003: Strategic guidelines for street canyon geometry to achieve sustainable street air quality—Part II: Multiple canopies and canyons. Atmos. Environ., 37 , 27612772.

    • Search Google Scholar
    • Export Citation
  • Counihan, J., 1971: Wind tunnel determination of the roughness length as a function of a fetch and the roughness density of three-dimensional roughness elements. Atmos. Environ., 5 , 637642.

    • Search Google Scholar
    • Export Citation
  • Counihan, J., J. C. R. Hunt, and P. S. Jackson, 1974: Wakes behind two-dimensional surface obstacles in turbulent boundary layers. J. Fluid Mech., 64 , 529563.

    • Search Google Scholar
    • Export Citation
  • DePaul, F. T., and C. M. Shah, 1986: Measurements of wind velocities in a street canyon. Atmos. Environ., 20 , 455459.

  • DuPont, S., T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound.-Layer Meteor., 113 , 111158.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 2010: Fluid mechanics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech., 42 , 365389.

  • Fernando, H. J. S., S. M. Lee, J. Anderson, M. Princevac, E. Pardyjak, and S. Grossman Clarke, 2001: Urban fluid mechanics: Air circulation and contaminant dispersion in cities. J. Environ. Fluid Mech., 1 , 107164.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., D. Zajic, S. Di Sabatino, R. Dimitrova, B. Hedquist, and A. Dallman, 2010: Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys. Fluids, 22 , 051301. doi:10.1063/1.3407662.

    • Search Google Scholar
    • Export Citation
  • Gandemer, J., 1976: Inconfort du au vent aux abords des batiments: Concepts aerodynamiques cahiers du centre scientifique et technique du batiment. Cahier 1384, C.S.T.B. Nantes, France/NSB Tech. Note 710-19, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Gandemer, J., 1977: Wind environment around buildings: Aerodynamic concepts. Proceedings of the Fourth International Conference on Wind Effects on Buildings and Structures, K. J. Eaton, Ed., Cambridge University Press, 423–432.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., R. H. Reynolds, J. Heiser, and R. Bornstein, 2004: Plans for NSE 04 tracer experiment in Manhattan. Proc. Fifth Conf. on Urban Environment, Vancouver, BC, Amer. Meteor. Soc., 1.5.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., J. White, Y. Zhou, and A. Kosheleva, 2006: Analysis of Joint Urban 2003 and Madison Square Garden 2005 meteorological and tracer data. Proc. Sixth Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., J7.1.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1979: Empirical estimation of wake cavity size behind block-type structures. Preprints, Fourth Symp. on Turbulence, Diffusion and Air Pollution, Reno, NV, Amer. Meteor. Soc., 603–609.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1980: Dispersion in the vicinity of buildings. Proc. Second Joint Conf. on Applications of Air Pollution Meteorology and Industrial Meteorology., New Orleans, LA, Amer. Meteor. Soc., 92–107.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1982: Methods for estimating wake flow and effluent dispersion near simple block-like buildings. U.S. Nuclear Regulatory Commission Rep. NUREG/CR-2521 and NOAA Tech. Memo. ERL-ARL-108, NOAA/ERL, 138 pp.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1984: Flow and dispersion near obstacles. Atmospheric Science and Power Production, D. Randerson, Ed., U.S. Department of Energy, 241–325.

    • Search Google Scholar
    • Export Citation
  • Hosker, R. P., 1987: Effects of buildings on local dispersion. Modeling the Urban Boundary Layer, Amer. Meteor. Soc., 95–159.

  • Hunt, J. C. R., and D. J. Carruthers, 2004: Urban accidental releases review. Cambridge Environmental Research Consultants Report for ADMC, Rep. FM568/R1/03.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., C. J. Abell, J. A. Peterka, and H. Woo, 1978: Kinematic studies of the flows around free and surface mounted obstacles: Applying topology to flow visualization. J. Fluid Mech., 86 , 179200.

    • Search Google Scholar
    • Export Citation
  • Hunter, L. J., I. D. Watson, and G. T. Johnson, 1991: Modeling air flow regimes in urban canyons. Energy Build., 15–16 , 315324.

  • Hussain, M., and B. E. Lee, 1980: A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings. J. Wind Eng. Ind. Aerodyn., 6 , 207225.

    • Search Google Scholar
    • Export Citation
  • Johnson, W. B., F. L. Ludwig, W. F. Dabberdt, and R. J. Allen, 1973: An urban diffusion simulation model for carbon monoxide. J. Air Pollut. Control Assoc., 23 , 490498.

    • Search Google Scholar
    • Export Citation
  • Kastner-Klein, P., R. Berkowicz, and R. Britter, 2004: The influence of street architecture on flow and dispersion in street canyons. Meteor. Atmos. Phys., 87 , 121131.

    • Search Google Scholar
    • Export Citation
  • Kim, J-J., and J-J. Baik, 1999: A numerical study of thermal effects on flow and pollution dispersion in urban street canyons. J. Appl. Meteor., 38 , 12491261.

    • Search Google Scholar
    • Export Citation
  • Kim, J-J., and J-J. Baik, 2001: Urban street-canyon flows with bottom heating. Atmos. Environ., 35 , 33953404.

  • Klein, P., and J. V. Clark, 2007: Flow variability in a North American downtown street canyon. J. Appl. Meteor. Climatol., 46 , 851877.

    • Search Google Scholar
    • Export Citation
  • Lawson Jr., R. E., W. H. Snyder, and J. C. R. Hunt, 1988: Flow structure of recirculating wake flows downwind of surface-mounted obstacles. Preprints, Eighth Symp. on Turbulence and Diffusion, San Diego, CA, Amer. Meteor. Soc., 248–251.

    • Search Google Scholar
    • Export Citation
  • Lee, I. Y., and H. M. Park, 1994: Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos. Environ., 28 , 23432349.

    • Search Google Scholar
    • Export Citation
  • Macdonald, R. W., 2000: Modeling the mean velocity profile in the urban canopy layer. Bound.-Layer Meteor., 97 , 2545.

  • Meroney, R. N., 1982: Turbulent diffusion near buildings. Engineering Meteorology, E. J. Plate, Ed., Elsevier Scientific, 481–525.

  • Nelson, M. A., E. R. Pardyjak, J. C. Klewicki, S. U. Pol, and M. J. Brown, 2007a: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part I: Mean flow and turbulence statistics. J. Appl. Meteor. Climatol., 46 , 20382054.

    • Search Google Scholar
    • Export Citation
  • Nelson, M. A., E. R. Pardyjak, M. J. Brown, and J. C. Klewicki, 2007b: Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part II: Spectra, cospectra, and quadrant analyses. J. Appl. Meteor. Climatol., 46 , 20552073.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1975: A pollution model for street-level air. Atmos. Environ., 9 , 1931.

  • Oke, T. R., 1988: Street design and urban canopy layer climate. Energy Build., 11 , 103113.

  • Park, K. S., and H. J. S. Fernando, 2006: The use of an urban canopy parameterization for MM-5: Application to the Phoenix airshed. Preprints, Sixth Symp. on Urban Environments, Atlanta, GA, Amer. Meteor. Soc., 4.14.

    • Search Google Scholar
    • Export Citation
  • Penwarden, A. D., and A. F. E. Wise, 1975: Wind environment around buildings. Building Research Establishment Rep., Her Majesty’s Stationary Office, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Princevac, M., J-J. Baik, X. Li, S-B. Park, and H. Pan, 2010: Lateral channeling within rectangular arrays of cubical obstacles. J. Wind Eng. Ind. Aerodyn., 98 , 377385.

    • Search Google Scholar
    • Export Citation
  • Ramamurthy, P., E. R. Pardyjak, and J. C. Klewicki, 2007: Observations of the effects of atmospheric stability on turbulence statistics deep within an urban street canyon. J. Appl. Meteor. Climatol., 46 , 20742085.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., A. S. Thom, and I. Edwards, 1980: A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound.-Layer Meteor., 18 , 373397.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., 1995: Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ., 29 , 14731486.

  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126 , 941990.

  • Sakakibara, Y., 1996: A numerical study of the effect of urban geometry upon the surface energy budget. Atmos. Environ., 30 , 487496.

  • Sang, J-J., and J. Malcom, 2002: Application of the ke turbulence model to the height Reynolds number skimming flow field of an urban street canyon. Atmos. Environ., 36 , 11371145.

    • Search Google Scholar
    • Export Citation
  • Sini, J-F., S. Anquetin, and P. G. Mestayer, 1996: Pollutant dispersion and thermal effects in urban street canyons. Atmos. Environ., 30 , 26592677.

    • Search Google Scholar
    • Export Citation
  • Soulhac, L., 2000: Modélisation de la dispersion atmosphérique à l’intérieur de la canopĕe urbaine. Ph.D. thesis, École Central de Lyon, 345 pp.

  • Terjung, W. H., and P. A. O’Rourke, 1980: Simulating the casual elements of urban heat islands. Bound.-Layer Meteor., 19 , 93118.

  • Tseng, Y-H., C. Meneveau, and M. B. Parlange, 2006: Modeling flow around bluff bodies and urban dispersion using large eddy simulation. Environ. Sci. Technol., 40 , 26532662.

    • Search Google Scholar
    • Export Citation
  • Tutar, M., and G. Oguz, 2002: Large eddy simulation of wind flow around parallel buildings with varying configurations. Fluid Dyn. Res., 31 , 289315.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. J., and R. E. Britter, 1982: Estimates of building surface concentrations from nearby point sources. Atmos. Environ., 16 , 26312646.

    • Search Google Scholar
    • Export Citation
  • Wiren, B. G., 1975: A wind tunnel study of wind velocities in passages and through buildings. Proc. Fourth Int. Conf. on Wind Effects on Buildings and Structures, London, United Kingdom, Building Research Establishment, 465–475.

    • Search Google Scholar
    • Export Citation
  • Woo, H. G. C., J. A. Peterka, and J. E. Cermak, 1977: Wind-tunnel measurements in the wakes of structures. NASA Contractor Rep. NASA CR-2806, 226 pp.

    • Search Google Scholar
    • Export Citation
  • Xiaomin, X., H. Zhen, and W. Jiasong, 2005: The impact of urban street layout on local atmospheric environment. Build. Environ., 41 , 13521362.

    • Search Google Scholar
    • Export Citation
  • Zajic, D., 2006: Flow and turbulence in urban roughness canopies. Ph.D. dissertation, Arizona State University, 141 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 27
PDF Downloads 17 17 17

Flow and Turbulence in an Urban Canyon

View More View Less
  • 1 * Center for Environmental Fluid Dynamics, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona
  • | 2 Systems Engineering and Integration Group, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 3 Environmental Fluid Dynamics Laboratories, Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana
  • | 4 Department of Mechanical Engineering, University of California, Riverside, Riverside, California
  • | 5 Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
Restricted access

Abstract

A better understanding of the interaction between the built environment and the atmosphere is required to more effectively manage urban airsheds. This paper reports an analysis of data from an atmospheric measurement campaign in Oklahoma City, Oklahoma, during the summer of 2003 that shows wind flow patterns, turbulence, and thermal effects in the downtown area. Experimental measurements within a street canyon yielded airflow patterns, stability conditions, and turbulence properties as a function of the incoming wind direction and time of the day. Air and surface temperatures at two different sites, one within the downtown urban canyon and the other in a nearby park, were measured. A study of the stability conditions within the urban canyon during the campaign indicates that dynamically stable conditions did not occur within the canyon. This provides evidence that the built environment can strongly influence the thermal characteristics in cities. Mean flow patterns close to the street level are analyzed for two different ranges of incoming wind directions and are compared with those obtained from a previous field experiment featuring idealized building configurations. This paper presents an approach allowing the estimation of wind direction in an urban canyon, given inflow conditions, that shows good agreement with wind patterns in the Oklahoma City street canyon. Turbulence statistics were calculated and normalized using different velocity scales to investigate the efficacy of the latter in specifying turbulence levels in urban canopies. The dependence of turbulence quantities on incoming wind direction and time of the day was investigated.

Corresponding author address: D. Zajic, Center for Environmental Fluid Dynamics, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287-9809. Email: dzajic@lanl.gov

Abstract

A better understanding of the interaction between the built environment and the atmosphere is required to more effectively manage urban airsheds. This paper reports an analysis of data from an atmospheric measurement campaign in Oklahoma City, Oklahoma, during the summer of 2003 that shows wind flow patterns, turbulence, and thermal effects in the downtown area. Experimental measurements within a street canyon yielded airflow patterns, stability conditions, and turbulence properties as a function of the incoming wind direction and time of the day. Air and surface temperatures at two different sites, one within the downtown urban canyon and the other in a nearby park, were measured. A study of the stability conditions within the urban canyon during the campaign indicates that dynamically stable conditions did not occur within the canyon. This provides evidence that the built environment can strongly influence the thermal characteristics in cities. Mean flow patterns close to the street level are analyzed for two different ranges of incoming wind directions and are compared with those obtained from a previous field experiment featuring idealized building configurations. This paper presents an approach allowing the estimation of wind direction in an urban canyon, given inflow conditions, that shows good agreement with wind patterns in the Oklahoma City street canyon. Turbulence statistics were calculated and normalized using different velocity scales to investigate the efficacy of the latter in specifying turbulence levels in urban canopies. The dependence of turbulence quantities on incoming wind direction and time of the day was investigated.

Corresponding author address: D. Zajic, Center for Environmental Fluid Dynamics, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287-9809. Email: dzajic@lanl.gov

Save