Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City

Radley M. Horton Center for Climate Systems Research, Earth Institute, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Radley M. Horton in
Current site
Google Scholar
PubMed
Close
,
Vivien Gornitz Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Vivien Gornitz in
Current site
Google Scholar
PubMed
Close
,
Daniel A. Bader Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Daniel A. Bader in
Current site
Google Scholar
PubMed
Close
,
Alex C. Ruane NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Alex C. Ruane in
Current site
Google Scholar
PubMed
Close
,
Richard Goldberg Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Richard Goldberg in
Current site
Google Scholar
PubMed
Close
, and
Cynthia Rosenzweig NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Cynthia Rosenzweig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a time-sensitive approach to climate change projections that was developed as part of New York City’s climate change adaptation process and that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well versed in risk management, helped to preselect the climate variables most likely to impact urban infrastructure and requested a projection range rather than a single “most likely” outcome. The climate projections approach is transferable to other regions and is consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 GCMs and three emissions scenarios to calculate monthly change factors based on 30-yr average future time slices relative to a 30-yr model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. On the basis of these methods, the current 1-in-10-year coastal flood is projected to occur more than once every 3 years by the end of the century and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme-event frequency are highly uncertain.

Corresponding author address: Radley Horton, Columbia University Center for Climate Systems Research, 2880 Broadway, New York, NY 10025. E-mail: rh142@columbia.edu

Abstract

This paper describes a time-sensitive approach to climate change projections that was developed as part of New York City’s climate change adaptation process and that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well versed in risk management, helped to preselect the climate variables most likely to impact urban infrastructure and requested a projection range rather than a single “most likely” outcome. The climate projections approach is transferable to other regions and is consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 GCMs and three emissions scenarios to calculate monthly change factors based on 30-yr average future time slices relative to a 30-yr model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. On the basis of these methods, the current 1-in-10-year coastal flood is projected to occur more than once every 3 years by the end of the century and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme-event frequency are highly uncertain.

Corresponding author address: Radley Horton, Columbia University Center for Climate Systems Research, 2880 Broadway, New York, NY 10025. E-mail: rh142@columbia.edu
Save
  • Arnell, N. W., 1996: Global Warming, River Flows, and Water Resources. John Wiley and Sons, 234 pp.

  • ASCE, 2009: 2009 Report Card for America’s Infrastructure. American Society of Civil Engineers, 153 pp. [Available online at http://www.infrastructurereportcard.org/sites/default/files/RC2009_full_report.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bardossy, A., and E. Plate, 1992: Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour. Res., 28, 12471259.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 386–432.

    • Search Google Scholar
    • Export Citation
  • Bradbury, J. A., B. D. Keim, and C. P. Wake, 2002: U.S. East Coast trough indices at 500 hPa and New England winter climate variability. J. Climate, 15, 35093517.

    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., M. D. Dettinger, E. P. Maurer, and M. Anderson, 2008: Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Climatic Change, 89, 371394.

    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, D. Blakenship, and B. D. Tapley, 2009: Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2, 859862.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 849–940.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., T. R. Karl, J. H. Lawrimore, and S. A. Del Greco, 1999: United States Historical Climatology Network daily temperature and precipitation data (1891–1997). Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center Rep. ORNL/CDIAC-118, NDP-070, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Fairbanks, R. G., 1989: 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637642.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., cited 2010: The Third Generation Coupled Global Climate Model (CGCM3). [Available online at http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1.]

    • Search Google Scholar
    • Export Citation
  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamstø, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21, 2751.

    • Search Google Scholar
    • Export Citation
  • Gaffin, S. R., and Coauthors, 2008: Variations in New York City’s urban heat island strength over time and space. Theor. Appl. Climatol., 94, 111.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., 1986: Methods for evaluating the regional hydrologic effects of global climate changes. J. Hydrol., 88, 97116.

  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 Climate System Model. Commonwealth Scientific and Industrial Research Organisation Atmospheric Research Tech. Paper 60, 130 pp.

    • Search Google Scholar
    • Export Citation
  • Gornitz, V., 2001: Sea-level rise and coasts. Climate Change and a Global City: The Potential Consequences of Climate Variability and Change—Metro East Coast, C. Rosenzweig and W. D. Solecki, Eds., Columbia Earth Institute, 121–148.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19, 97116.

    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2009: Reconstructing sea level from paleo and projected temperatures 2000 to 2100 A.D. Climate Dyn., 34, 461472.

    • Search Google Scholar
    • Export Citation
  • Grotch, S. L., and M. C. MacCracken, 1991: The use of general circulation models to predict regional climatic change. J. Climate, 4, 286303.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, P. Kharecha, G. Russell, D. W. Lea, and M. Siddall, 2007: Climate changes and trace gases. Philos. Trans. Roy. Soc., 365, 19251954.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., and Coauthors, 2007: Past and future changes in climate and hydrological indicators in the U.S. Northeast. Climate Dyn., 28, 381407.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 664–745.

    • Search Google Scholar
    • Export Citation
  • Hill, D., and R. Goldberg, 2001: Energy demand. Climate Change and a Global City: The Potential Consequences of Climate Variability and Change—Metro East Coast, C. Rosenzweig and W. D. Solecki, Eds., Columbia Earth Institute, 121–148.

    • Search Google Scholar
    • Export Citation
  • Hogrefe, C., C. Rosenzweig, P. Kinney, J. Rosenthal, K. Knowlton, B. Lynn, J. Patz, and M. Bell, 2004: Health impacts from climate-change induced changes in ozone level in 85 United States cities. Epidemiology, 15, 9495.

    • Search Google Scholar
    • Export Citation
  • Horton, R., and C. Rosenzweig, 2010: Climate risk information. Climate Change Adaptation in New York City: Building a Risk Management Response, C. Rosenzweig, and W. Solecki, Eds., New York Academy of Sciences, 148–228.

    • Search Google Scholar
    • Export Citation
  • Horton, R., C. Herweijer, C. Rosenzweig, J. P. Liu, V. Gornitz, and A. C. Ruane, 2008: Sea level rise projections for current generation CGCMs based on the semi-empirical method. Geophys. Res. Lett., 35, L02715, doi:10.01029/02007GL032486.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, W. Han, and J. Yin, 2009: Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys. Res. Lett., 36, L10707, doi:10.1029/2009GL037998.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19, 13271353.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., and Coauthors, 2004: Generating high-resolution climate change scenarios using PRECIS. MET Office Hadley Centre.

  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972.

    • Search Google Scholar
    • Export Citation
  • K-1 Model Developers, 2004: K-1 Technical Report. Center for Climate System Research, University of Tokyo, 34 pp.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., C. N. Williams, F. T. Quinlan, and T. A. Boden, 1990: United States Historical Climatology Network (HCN) serial temperature and precipitation data. Oak Ridge National Laboratory Carbon Dioxide Information and Analysis Center Environmental Science Division Publ. 304, 389 pp.

    • Search Google Scholar
    • Export Citation
  • Kinney, P. L., D. Shindell, E. Chae, and B. Winston, 2001: Public health. Climate Change and a Global City: The Potential Consequences of Climate Variability and Change—Metro East Coast, C. Rosenzweig and W. D. Solecki, Eds., Columbia Earth Institute, 103–120.

    • Search Google Scholar
    • Export Citation
  • Le Quere, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836.

  • Marti, O., and Coauthors, 2005: The New IPSL Climate System Model: IPSL-CM4. Institut Pierre Simon Laplace des Sciences de l’Environnement Global Note du Pôle de Modélisation 26, 84 pp.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy, 2007: Fine-resolution climate projections enhance regional climate change impact studies. Eos, Trans. Amer. Geophys. Union, 88, 504.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Climatology and internal variability in a 1000-year control simulation with the coupled climate model ECHO-G—I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A, 605621.

    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., M. Tamisiea, J. L. Davis, and G. A. Milne, 2001: Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 10261029.

    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., N. Gomez, and P. U. Clark, 2009: The sea-level fingerprint of West Antarctic collapse. Science, 323, 753.

  • Mote, P., A. Petersen, S. Reeder, H. Shipman, and W. Binder, 2008: Sea level rise in the coastal waters of Washington State. University of Washington Climate Impacts Group and the Washington Department of Ecology Rep., 11 pp.

    • Search Google Scholar
    • Export Citation
  • MTA, 2007: August 8, 2007 storm report. Metropolitan Transportation Authority Rep., 115 pp. [Available online at http://www.mta.info/mta/pdf/storm_report_2007.pdf.]

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Namias, J., 1966: Nature and possible causes of the northeastern United States drought during 1962–65. Mon. Wea. Rev., 94, 543554.

  • National Research Council, 2009: Informing Decisions in a Changing Climate. The National Academies Press, 200 pp.

  • National Research Council, 2010a: Advancing the Science of Climate Change. America’s Climate Choices Series, The National Academies Press, 528 pp.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2010b: Adapting to the Impacts of Climate Change. America’s Climate Choices Series, The National Academies Press, 292 pp.

    • Search Google Scholar
    • Export Citation
  • New York City Office of the Mayor, 2009: Mayor Bloomberg releases New York City Panel on Climate Change report that predicts higher temperatures and rising lea levels for New York City. NYC press release. [Available online at www.nyc.gov/html/om/html/2009a/pr079-09.html.]

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., S. Hanson, and C. Herweiger, 2008: Ranking port cities with high exposure and vulnerability to climate extremes: Exposure estimates. OECD Environment Working Paper 1, 63 pp.

    • Search Google Scholar
    • Export Citation
  • NYCDEP, 2008: Assessment and action plan: A report based on the ongoing work of the DEP Climate Change Task Force. NYCDEP Climate Change Program Rep. 1, 102 pp. [Available online at http://www.nyc.gov/html/dep/pdf/climate/climate_complete.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2001: Global glacial isostatic adjustment and modern instrumental records of relative sea level history. Sea Level Rise: History and Consequences, B. C. Douglas, M. S. Kearney, and S. P. Leatherman, Eds., Academic Press, 65–95.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and R. G. Fairbanks, 2006: Global glacial ice volume and last glacial maximum duration from an extended Barbados sea level record. Quat. Sci. Rev., 25, 33223337.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., J. T. Harper, and S. O’Neel, 2008: Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321, 13401343.

    • Search Google Scholar
    • Export Citation
  • PlaNYC, 2008: Sustainable stormwater management plan 2008. Mayor’s Office of Long-Term Planning and Sustainability Rep., 112 pp. [Available online at http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/nyc_sustainable_stormwater_management_plan_final.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2007: A semi-empirical approach to projections future sea level rise. Science, 315, 368370.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 590–662.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and A. Cazenave, 2009: Ice sheets and sea level rise feedbacks. Arctic Climate Feedbacks: Global Implications, M. Sommerkorn and S. J. Hassol, Eds., WWF International Arctic Programme, 39–53.

    • Search Google Scholar
    • Export Citation
  • Rind, D., M. Chin, G. Feingold, D. Streets, R. A. Kahn, S. E. Schwartz, and H. Yu, 2009: Modeling the effects of aerosols on climate. Aerosol properties and their impacts on climate, U.S. Climate Change Science Program Synthesis and Assessment Product 2.3, M. Chin, R. A. Kahn, and S. E. Schwartz, Eds., National Aeronautics and Space Administration, 64–97.

    • Search Google Scholar
    • Export Citation
  • Rohling, E. J., K. Grant, C. H. Hemleben, M. Siddall, B. A. A. Hoogakker, M. Bolshaw, and M. Kucery, 2008: High rates of sea-level rise during the last interglacial period. Nat. Geosci., 1, 3842.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and W. D. Solecki, Eds., 2001: Climate Change and a Global City: The Potential Consequences of Climate Variability and Change—Metro East Coast. Columbia Earth Institute, 224 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and W. D. Solecki, Eds., 2010: Climate change adaptation in New York City: Building a risk management response. New York City Panel on Climate Change 2010 Rep., Annals of the New York Academy of Sciences, Vol. 1196, 354 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., W. D. Solecki, L. Parshall, and S. Hodges, Eds., 2006: Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. New York State Energy Research and Development Authority New York City Regional Heat Island Initiative Final Rep. 06-06, 133 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., D. C. Major, K. Demong, C. Stanton, R. Horton, and M. Stults, 2007: Managing climate change risks in New York City’s water system: Assessment and adaptation planning. Mitigation Adapt. Strategies Global Change, 12, 13911409.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and D. Wingham, 2007: Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science, 315, 15291532.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., C. Tebaldi, D. Nychka, and L. O. Mearns, 2009: Bayesian modeling of uncertainty in ensembles of climate models. J. Amer. Stat. Assoc., 104, 97116.

    • Search Google Scholar
    • Export Citation
  • Solecki, W. D., L. Patrick, and M. Brady, 2010: Climate protection levels: Incorporating climate change into design and performance standards. Climate change adaptation in New York City: Building a risk management response. New York City Panel on Climate Change 2010 Rep., Annals of the New York Academy of Sciences, C. Rosenzweig and W. D. Solecki, Eds., Vol. 1196, New York Academy of Sciences, 294–351.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sussman, E., and D. C. Major, 2010: Law and regulation. Climate change adaptation in New York City: Building a risk management response. New York City Panel on Climate Change 2010 Rep., Annals of the New York Academy of Sciences, C. Rosenzweig and W. D. Solecki, Eds., Vol. 1196, New York Academy of Sciences, 87–112.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 1524.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211.

    • Search Google Scholar
    • Export Citation
  • Terray, L. S., S. Valcke, and A. Piacentini, 1998: OASIS 2.2 guide and reference manual. Centre Europeen de Recherche et de Formation Avancée en Calcul Scientifique Tech. Rep. TR/CMGC/98-05.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and N. A. Diansky, 2004: El-Niño reproduction in a coupled general circulation model of atmosphere and ocean. Russ. Meteor. Hydrol., 12, 514.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16, 755774.

  • Weiss, J., J. Overpeck, and B. Strauss, 2011: Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous U.S.A. Climatic Change, 105, 635645, doi:10.1007/s10584-011-0024-x.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M., P. D. Jones, K. Briffa, and G. Smith, 1990: Obtaining sub-grid-scale information from coarse-resolution general circulation model output. J. Geophys. Res., 95, 19431953.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., T. M. L. Wigley, D. J. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 29953008.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., C. W. Dawson, and E. M. Barrow, 2002: SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Model. Software, 17, 145157.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. Charles, E. Zorita, B. Timbal, P. Whetton, and L. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Supporting Material, 27 pp. [Available online at http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf.]

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., M. J. Menne, R. S. Vose, and D. R. Easterling, 2005: United States Historical Climatology Network monthly temperature and precipitation data. Oak Ridge National Laboratory Carbon Dioxide Information Analysis Center Rep. ORNL/CDIAC-118, NDP-019.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1989: Calculation of monthly and annual 30-year standard normals. WCDP 10 and WMO-TD 341, World Meteorological Organization.

    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci., 15, 15.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and A. Noda, 2003: Improvements of the Meteorological Research Institute Global Ocean-Atmosphere Coupled GCM (MRI-GCM2) and its climate sensitivity. National Institute for Environmental Studies CGER Supercomputing Activity Rep.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1467 484 127
PDF Downloads 554 139 10