Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model

Chenxi Wang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Chenxi Wang in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
,
Steven Platnick NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Platnick in
Current site
Google Scholar
PubMed
Close
,
Andrew K. Heidinger NOAA/NESDIS Center for Satellite Applications and Research, Madison, Wisconsin

Search for other papers by Andrew K. Heidinger in
Current site
Google Scholar
PubMed
Close
,
Yongxiang Hu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Yongxiang Hu in
Current site
Google Scholar
PubMed
Close
, and
Robert E. Holz Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Robert E. Holz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A computationally efficient radiative transfer model (RTM) is developed for the inference of ice cloud optical thickness and effective particle size from satellite-based infrared (IR) measurements and is aimed at potential use in operational cloud-property retrievals from multispectral satellite imagery. The RTM employs precomputed lookup tables to simulate the top-of-the-atmosphere (TOA) radiances (or brightness temperatures) at 8.5-, 11-, and 12-μm bands. For the clear-sky atmosphere, the optical thickness of each atmospheric layer resulting from gaseous absorption is derived from the correlated-k-distribution method. The cloud reflectance, transmittance, emissivity, and effective temperature are precomputed using the Discrete Ordinate Radiative Transfer model (DISORT). For an atmosphere containing a semitransparent ice cloud layer with a visible optical thickness τ smaller than 5, the TOA brightness temperature differences (BTDs) between the fast model and the more rigorous DISORT results are less than 0.1 K, whereas the BTDs are less than 0.01 K if τ is larger than 10. With the proposed RTM, the cloud optical and microphysical properties are retrieved from collocated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data. Comparisons between the retrieved ice cloud properties (optical thickness and effective particle size) based on the present IR fast model and those from the Aqua/MODIS operational collection-5 cloud products indicate that the IR retrievals are smaller. A comparison between the IR-retrieved ice water path (IWP) and CALIOP-retrieved IWP shows robust agreement over most of the IWP range.

Corresponding author address: Prof. Ping Yang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: pyang@tamu.edu

Abstract

A computationally efficient radiative transfer model (RTM) is developed for the inference of ice cloud optical thickness and effective particle size from satellite-based infrared (IR) measurements and is aimed at potential use in operational cloud-property retrievals from multispectral satellite imagery. The RTM employs precomputed lookup tables to simulate the top-of-the-atmosphere (TOA) radiances (or brightness temperatures) at 8.5-, 11-, and 12-μm bands. For the clear-sky atmosphere, the optical thickness of each atmospheric layer resulting from gaseous absorption is derived from the correlated-k-distribution method. The cloud reflectance, transmittance, emissivity, and effective temperature are precomputed using the Discrete Ordinate Radiative Transfer model (DISORT). For an atmosphere containing a semitransparent ice cloud layer with a visible optical thickness τ smaller than 5, the TOA brightness temperature differences (BTDs) between the fast model and the more rigorous DISORT results are less than 0.1 K, whereas the BTDs are less than 0.01 K if τ is larger than 10. With the proposed RTM, the cloud optical and microphysical properties are retrieved from collocated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data. Comparisons between the retrieved ice cloud properties (optical thickness and effective particle size) based on the present IR fast model and those from the Aqua/MODIS operational collection-5 cloud products indicate that the IR retrievals are smaller. A comparison between the IR-retrieved ice water path (IWP) and CALIOP-retrieved IWP shows robust agreement over most of the IWP range.

Corresponding author address: Prof. Ping Yang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: pyang@tamu.edu
Save
  • Baran, A. J., 2004: On the scattering and absorption properties of cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer, 89, 1736.

  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260.

  • Baum, B. A., R. A. Frey, G. G. Mace, M. K. Harkey, and P. Yang, 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42, 905919.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, S. L. Nasiri, A. K. Heidinger, A. J. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, Y. X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 25342549.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus clouds’ microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60, 375390.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132, 16841700.

    • Search Google Scholar
    • Export Citation
  • Collins, D. G., W. G. Blättner, M. B. Wells, and H. G. Horak, 1972: Backward Monte Carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres. Appl. Opt., 11, 26842696.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95, 201220.

    • Search Google Scholar
    • Export Citation
  • Garrett, K. J., P. Yang, S. L. Nasiri, C. R. Yost, and B. A. Baum, 2009: Influence of cloud-top height and geometric thickness on a MODIS infrared-based ice cloud retrieval. J. Appl. Meteor. Climatol., 48, 818832.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and J. W. Hovenier, 1971: The doubling method applied to multiple scattering of polarized light. J. Quant. Spectrosc. Radiat. Transfer, 11, 809812.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. O’Dell, R. Bennartz, and T. Greenwaldand, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402.

    • Search Google Scholar
    • Export Citation
  • Hess, M., R. B. A. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60, 301308.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., D. M. Winker, and G.-J. Zadelhoff, 2005: Extinction-ice water content-effective radius algorithms for CALIPSO. Geophys. Res. Lett., 32, L10807, doi:10.1029/2005GL022742.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, H. L. Huang, B. A. Baum, Y. X. Hu, and S. Platnick, 2007: The sensitivity of ice cloud optical and microphysical passive satellite retrievals to cloud geometrical thickness. IEEE Trans. Geosci. Remote Sens., 45, 13151323.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10 μm window region. J. Meteor. Soc. Japan, 63, 8889.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2005: Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor. J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and T. Nauss, 2005: Satellite-based retrieval of ice cloud properties using a semianalytical algorithm. J. Geophys. Res., 110, D19206, doi:10.1029/2004JD005744.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53, 501517.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395.

    • Search Google Scholar
    • Export Citation
  • Liu, X., W. L. Smith, D. K. Zhou, and A. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors. Appl. Opt., 45, 201209.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., T. J. Kleespies, and L. J. Crone, 1995: Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach. Appl. Opt., 34, 83968399.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011a: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2011.2144601, in press.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2011.2144602, in press.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiative transfer: General definition, application, and limitations. J. Atmos. Sci., 59, 23302346.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and R. P. d’Entremont, 2008: Satellite remote sensing of small ice crystal concentrations in cirrus clouds. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, 185–188.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. P. d’Entremont, and R. P. Lawson, 2010: Inferring cirrus size distributions through satellite remote sensing and microphysical databases. J. Atmos. Sci., 67, 11061125.

    • Search Google Scholar
    • Export Citation
  • Moncet, J. L., G. Uymin, A. E. Lipton, and H. E. Snell, 2008: Infrared radiance modeling by optimal spectral sampling. J. Atmos. Sci., 65, 39173934.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Niu, J., P. Yang, H. L. Huang, J. E. Davies, J. Li, B. A. Baum, and Y. X. Hu, 2007: A fast infrared radiative transfer model for overlapping clouds. J. Quant. Spectrosc. Radiat. Transfer, 103, 447459.

    • Search Google Scholar
    • Export Citation
  • Plass, G. N., and G. W. Kattawar, 1968: Monte Carlo calculation of light scattering from clouds. Appl. Opt., 7, 415419.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riëdi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, R. J. Curran, and T. Styles, 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379399.

    • Search Google Scholar
    • Export Citation
  • Protat, A., A. Armstrong, M. Haeffelin, Y. Morille, J. Pelon, J. Delanoë, and D. Bouniol, 2006: Impact of conditional sampling and instrumental limitations on the statistics of cloud properties derived from cloud radar and lidar at SIRTA. Geophys. Res. Lett., 33, L11805, doi:10.1029/2005GL025340.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., P. Brunel, S. English, P. Bauer, U. O’Keeffe, P. Francis, and P. Rayer, 2006: RTTOV-8—Science and validation report. Met Office Forecasting and Research Tech. Doc. NWPSAF-MO-TV-007, 46 pp.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method. Appl. Opt., 27, 25022509.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., R. E. Holz, A. Chedin, D. L. Mitchell, and A. J. Baran, 1999: Retrieval of cirrus ice crystal sizes from 8.3 and 11.1 μm emissivities determined by the improved initialization inversion of TIROS-N operational vertical sounder observations. J. Geophys. Res., 104, 793808.

    • Search Google Scholar
    • Export Citation
  • Sun, W., N. G. Loeb, G. Videen, and Q. Fu, 2004: Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm. Appl. Opt., 43, 19571964.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., N. Jacobowitz, and H. B. Howell, 1966: Matrix methods for multiple-scattering problems. J. Atmos. Sci., 23, 289296.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Wei, H., P. Yang, J. Li, B. A. Baum, H. L. Huang, S. Platnick, Y. X. Hu, and L. Strow, 2004: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42, 22542266.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2005: Impact of cirrus crystal shape on solar spectral irradiance: A case study for subtropical cirrus. J. Geophys. Res., 110, D03202, doi:10.1029/2004JD005294.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. L. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H. L. Huang, M. D. King, and S. Platnick, 2007: Differences between collection 004 and 005 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45, 28862899.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y. X. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Single-scattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 19401947.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, 2004: Geometrical-optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 24902499.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2007: A fast infrared radiative transfer model based on the adding–doubling method for hyperspectral remote-sensing applications. J. Quant. Spectrosc. Radiat. Transfer, 105, 243263.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock, 2010: Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds. J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3449 2438 27
PDF Downloads 609 129 6