A Method for Diagnosing the Sources of Infrasound in Convective Storm Simulations

David A. Schecter NorthWest Research Associates, Redmond, Washington

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a convenient method for diagnosing the sources of infrasound in a numerical simulation of a convective storm. The method is based on an exact acoustic wave equation for the perturbation Exner function Π′. One notable source term (Suu) in the Π′ equation is commonly associated with adiabatic vortex fluctuations, whereas another (Sm) is directly connected to the heat and mass generated or removed during phase transitions of moisture. Scale estimates suggest that other potential sources are usually unimportant. Simple numerical simulations of a disturbed vortex and evaporating cloud droplets are carried out to illustrate the infrasound of Suu and Sm. Moreover, the diagnostic method is applied to a towering cumulonimbus simulation that incorporates multiple categories of ice, liquid, and mixed-phase hydrometeors. The sensitivity of Sm to the modeling of the hail-to-rain category conversion is briefly addressed.

Corresponding author address: David A. Schecter, NorthWest Research Associates, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com

Abstract

This paper presents a convenient method for diagnosing the sources of infrasound in a numerical simulation of a convective storm. The method is based on an exact acoustic wave equation for the perturbation Exner function Π′. One notable source term (Suu) in the Π′ equation is commonly associated with adiabatic vortex fluctuations, whereas another (Sm) is directly connected to the heat and mass generated or removed during phase transitions of moisture. Scale estimates suggest that other potential sources are usually unimportant. Simple numerical simulations of a disturbed vortex and evaporating cloud droplets are carried out to illustrate the infrasound of Suu and Sm. Moreover, the diagnostic method is applied to a towering cumulonimbus simulation that incorporates multiple categories of ice, liquid, and mixed-phase hydrometeors. The sensitivity of Sm to the modeling of the hail-to-rain category conversion is briefly addressed.

Corresponding author address: David A. Schecter, NorthWest Research Associates, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com
Save
  • Abramowitz, M., and A. Stegun, 1972: Handbook of Mathematical Functions. Dover, 1046 pp.

  • Akhalkatsi, M., and G. Gogoberidze, 2009: Infrasound generation by tornadic supercell storms. Quart. J. Roy. Meteor. Soc., 135, 935940.

    • Search Google Scholar
    • Export Citation
  • Akhalkatsi, M., and G. Gogoberidze, 2011: Spectrum of infrasound radiation from supercell storms. Quart. J. Roy. Meteor. Soc., 137, 229235.

    • Search Google Scholar
    • Export Citation
  • Aurégan, Y., A. Maurel, V. Pagneux, and J.-F. Pinton, Eds., 2002: Sound–Flow Interactions. Springer-Verlag, 286 pp.

  • Bedard, A. J., Jr., 2005: Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Wea. Rev., 133, 241263.

    • Search Google Scholar
    • Export Citation
  • Bedard, A. J., Jr., and T. M. Georges, 2000: Atmospheric infrasound. Phys. Today, 53, 3237.

  • Bedard, A. J., Jr., B. W. Bartram, A. N. Keane, D. C. Welsh, and R. T. Nishiyama, 2004: The Infrasound Network (ISNet): Background, design details, and display capability as an 88D adjunct tornado detection tool. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 1.1. [Available online at http://ams.confex.com/ams/pdfpapers/81656.pdf.]

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Depasse, P., 1994: Lightning acoustic signatures. J. Geophys. Res., 99, 25 93325 940.

  • Dessler, A. J., 1973: Infrasonic thunder. J. Geophys. Res., 78, 18891896.

  • Farges, T., and E. Blanc, 2010: Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res., 115, A00E31, doi:10.1029/2009JA014700.

    • Search Google Scholar
    • Export Citation
  • Few, A. A., A. J. Dessler, D. J. Latham, and M. Brook, 1967: A dominant 200 Hz peak in the acoustic spectrum of thunder. J. Geophys. Res., 72, 61496154.

    • Search Google Scholar
    • Export Citation
  • Georges, T. M., 1976: Infrasound from convective storms. Part II: A critique of source candidates. NOAA Tech. Rep. ERL 380–WPL 49, 59 pp. [Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.]

    • Search Google Scholar
    • Export Citation
  • Goldstein, M. E., 1976: Aeroacoustics. McGraw-Hill, 305 pp.

  • Goldstein, M. E., 2003: A generalized acoustic analogy. J. Fluid Mech., 488, 315333.

  • Howe, M. S., 1979: The role of surface shear stress fluctuations in the generation of boundary layer noise. J. Sound Vib., 65, 159164.

    • Search Google Scholar
    • Export Citation
  • Howe, M. S., 2003: Theory of Vortex Sound. Cambridge University Press, 216 pp.

  • Hu, Z., C. L. Morfey, and N. D. Sandham, 2003: Sound radiation in turbulent channel flows. J. Fluid Mech., 475, 269302.

  • Johnson, J. B., R. C. Aster, and P. R. Kyle, 2004: Volcanic eruptions observed with infrasound. Geophys. Res. Lett., 31, L14604, doi:10.1029/2004GL020020.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and J. T. McQueen, 1987: A survey of nested grid techniques and their potential for use within the MASS weather prediction model. NASA Tech. Memo. 87808, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1952: On sound generated aerodynamically, I. General theory. Proc. Roy. Soc. London, A211, 564587.

  • Lighthill, M. J., 1954: On sound generated aerodynamically, II. Turbulence as a source of sound. Proc. Roy. Soc. London, A222, 132.

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., and R. A. Pielke Sr., 1994a: Thermal compression waves I: Total energy transfer. Quart. J. Roy. Meteor. Soc., 120, 305332.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., and R. A. Pielke Sr., 1994b: Thermal compression waves II: Mass adjustment and vertical transfer of total energy. Quart. J. Roy. Meteor. Soc., 120, 333359.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., and R. A. Pielke Sr., 2000: Thermally induced compression waves and gravity waves generated by convective storms. J. Atmos. Sci., 57, 32513271.

    • Search Google Scholar
    • Export Citation
  • Passner, J. E., and J. M. Noble, 2006: Acoustic energy measured in severe storms during a field study in June 2003. Army Research Laboratory Tech. Rep. ARL-TR-3749, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Powell, A., 1964: Theory of vortex sound. J. Acoust. Soc. Amer., 36, 177195.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. E. Nicholls, 2010: Generation of infrasound by evaporating hydrometeors in a cloud model. J. Appl. Meteor. Climatol., 49, 664675.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. E. Nicholls, J. Persing, A. J. Bedard Jr., and R. A. Pielke Sr., 2008: Infrasound emitted by tornado-like vortices: Basic theory and a numerical comparison to the acoustic radiation of a single-cell thunderstorm. J. Atmos. Sci., 65, 685713.

    • Search Google Scholar
    • Export Citation
  • Shariff, K., and M. Wang, 2005: A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source. Phys. Fluids, 17, 111.

    • Search Google Scholar
    • Export Citation
  • Stein, R. F., 1967: Generation of acoustic and gravity waves by turbulence in an isothermal stratified atmosphere. Sol. Phys., 2, 385432.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., A. J. Bedard Jr., E. Thaler, and R. Glancy, 2004: A comparison of ISNet data with radar data for tornadic and potentially tornadic storms in northeast Colorado. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/81466.pdf.]

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part 1: The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, G. Feingold, and B. Stevens, 2000: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171183.

    • Search Google Scholar
    • Export Citation
  • Waxler, R., and K. E. Gilbert, 2006: The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Amer., 119, 26512664.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 88 6
PDF Downloads 185 60 5