Evaluation of HOAPS-3 Ocean Surface Freshwater Flux Components

Axel Andersson Meteorologisches Institut der Universität, Hamburg, Germany

Search for other papers by Axel Andersson in
Current site
Google Scholar
PubMed
Close
,
Christian Klepp Meteorologisches Institut der Universität, Hamburg, Germany

Search for other papers by Christian Klepp in
Current site
Google Scholar
PubMed
Close
,
Karsten Fennig Met Office, Exeter, United Kingdom

Search for other papers by Karsten Fennig in
Current site
Google Scholar
PubMed
Close
,
Stephan Bakan Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Stephan Bakan in
Current site
Google Scholar
PubMed
Close
,
Hartmut Grassl Meteorologisches Institut der Universität, Hamburg, Germany

Search for other papers by Hartmut Grassl in
Current site
Google Scholar
PubMed
Close
, and
Jörg Schulz Deutscher Wetterdienst, Satellite Application Facility on Climate Monitoring, Offenbach, Germany

Search for other papers by Jörg Schulz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux EP in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in EP of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.

* Current affiliation: Max-Planck-Institut für Meteorologie, Hamburg, Germany

+ Current affiliation: Deutscher Wetterdienst, Satellite Application Facility on Climate Monitoring, Offenbach, Germany

# Current affiliation: The European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Corresponding author address: Axel Andersson, Max-Planck-Institut für Meteorologie, Bundesstr. 53, 20146 Hamburg, Germany. Email: christian.klepp@zmaw.de

This article included in the International Precipitation Working Group (IPWG) special collection.

Abstract

Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux EP in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in EP of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.

* Current affiliation: Max-Planck-Institut für Meteorologie, Hamburg, Germany

+ Current affiliation: Deutscher Wetterdienst, Satellite Application Facility on Climate Monitoring, Offenbach, Germany

# Current affiliation: The European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany

Corresponding author address: Axel Andersson, Max-Planck-Institut für Meteorologie, Bundesstr. 53, 20146 Hamburg, Germany. Email: christian.klepp@zmaw.de

This article included in the International Precipitation Working Group (IPWG) special collection.

Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. Goodman, 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82 , 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. G. Liepert, 2010: Anticipated changes in the global atmospheric water cycle. Environ. Res. Lett., 5 , 025201. doi:10.1088/1748-9326/5/2/025201.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., S. Bakan, K. Fennig, H. Graßl, C. Klepp, and J. Schulz, cited. 2007: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3—Monthly mean. World Data Center for Climate. [Available online at http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=HOAPS3_MONTHLY].

    • Search Google Scholar
    • Export Citation
  • Andersson, A., S. Bakan, and H. Graßl, 2010a: Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation. Tellus, 62 , 453468.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Graßl, and J. Schulz, 2010b: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data Discuss., 3 , 143194.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nunez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., L. H. Ayina, W. Drennan, K. Katsaros, A. M. Mestas-Nuñez, and R. T. Pinker, 2008: 15 years of ocean surface momentum and heat fluxes from remotely sensed observations. FLUXNEWS, Vol. 5, WCRP Working Group on Surface Fluxes, World Climate Research Programme, Geneva, Switzerland, 14–16. [Available online at http://sail.msk.ru/newsletter/fluxnews_5_final.pdf].

    • Search Google Scholar
    • Export Citation
  • Beranger, K., B. Barnier, S. Gulev, and M. Crepon, 2006: Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn., 56 , 104138.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90 , 645656.

    • Search Google Scholar
    • Export Citation
  • Bourras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19 , 62916313.

  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of oceanic precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48 , 13351344.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., X. Zeng, and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107 , 3141. doi:10.1029/2001JC000992.

    • Search Google Scholar
    • Export Citation
  • Burnett, W. C., M. Taniguchi, and J. Oberdorfer, 2001: Measurement and significance of the direct discharge of groundwater into the coastal zone. J. Sea Res., 46 , 109116.

    • Search Google Scholar
    • Export Citation
  • Casey, K. S., 2004: 4-km Pathfinder version 5 user guide. NOAA Tech. Rep., 11 pp. [Available online at http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/PFV50_UserGuide.pdf].

    • Search Google Scholar
    • Export Citation
  • Chou, S. H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C. L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • Chou, S. H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17 , 39733989.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • GRDC, cited. 2009: Surface freshwater fluxes into the world oceans/Global Runoff Data Centre: Comparisons of GRDC freshwater flux estimate with literature. Federal Institute of Hydrology (BfG), Koblenz, Germany. [Available online at http://www.bafg.de/cln_007/nn_317460/sid_F743821E9F88AD083AD1C494E3D95FDE/nsc_true/GRDC/EN/ 02__Services/02__DataProducts/ FreshwaterFluxes/freshflux__node.html?__nnn=true].

    • Search Google Scholar
    • Export Citation
  • GSFC, cited. 2007: Algorithm 3B43—TRMM and other data precipitation. Goddard Space Flight Center. [Available online at http://trmm.gsfc.nasa.gov/3b43.html].

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47 , 778794.

    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36 , 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 3855.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., G. A. Wick, and F. R. Robertson, 2009: Improved multisensor approach to satellite-retrieved near-surface specific humidity observations. J. Geophys. Res., 114 , D16303. doi:10.1029/2008JD011341.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., A. Gruber, C. R. Kondragunta, R. E. Livezey, and G. J. Huffman, 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11 , 29602979.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28 , 24692472.

    • Search Google Scholar
    • Export Citation
  • Klepp, C. P., S. Bakan, and H. Graßl, 2003: Improvements of satellite-derived cyclonic rainfall over the North Atlantic. J. Climate, 16 , 657669.

    • Search Google Scholar
    • Export Citation
  • Klepp, C. P., S. Bakan, and H. Graßl, 2005: Missing North Atlantic cyclonic precipitation in ECMWF numerical weather prediction and ERA-40 data detected through the satellite climatology HOAPS II. Meteor. Z., 14 , 809821.

    • Search Google Scholar
    • Export Citation
  • Klepp, C. P., K. Bumke, S. Bakan, and P. Bauer, 2010: Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY. Tellus, 62 , 469480.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., and H. Tomita, 2007: Introduction of J-OFURO latent heat flux version 2. Proc. Joint 2007 EUMETSAT Meteorological Satellite Conf. and 15th Satellite Meteorology and Oceanography Conf., Amsterdam, Netherlands, EUMETSAT and Amer. Meteor. Soc., 5 pp. [Available online at http://www.eumetsat.int/home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/ 2007/groups/cps/ documents/document/pdf_conf_p50_s5_11_kubota_v.pdf].

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45 , 22592275.

    • Search Google Scholar
    • Export Citation
  • Liu, J. P., and J. A. Curry, 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophys. Res. Lett., 33 , L05706. doi:10.1029/2005GL024809.

    • Search Google Scholar
    • Export Citation
  • Liu, W., A. Zhang, and J. Bishop, 1994: Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J. Geophys. Res., 99 , (C6). 1262312638.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., D. Smith, and F. Wentz, 2001: A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J. Geophys. Res., 106 , 1173111742.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19 , 521534.

    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6 , 203204.

  • NODC, cited. 2008: 4 km Pathfinder Version 5 User Guide. Silver Spring, Maryland, National Oceanographic Data Center. [Available online at http://www.nodc.noaa.gov/sog/pathfinder4km/userguide.html].

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10 , 149166.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20 , 13161338.

  • Schulz, J., P. Schlüssel, and H. Graßl, 1993: Water-vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens., 14 , 27732789.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1999: Intraseasonal surface fluxes in the tropical western Pacific and Indian oceans from NCEP reanalyses. Mon. Wea. Rev., 127 , 678693.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA–Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10 , 709726.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , (C12). 1546715472.

    • Search Google Scholar
    • Export Citation
  • Swift, C. T., L. S. Fedor, and R. O. Ramseier, 1985: An algorithm to measure sea ice concentration with microwave radiometers. J. Geophys. Res., 90 , 10871099.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J., and Y. Quilfen, 2003: Impact of rain cell on scatterometer data: 1. Theory and modeling. J. Geophys. Res., 108 , 3225. doi:10.1029/2002JC001428.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8 , 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90 , 311323.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wallcraft, A., A. Kara, C. Barron, E. Metzger, R. Pauley, and M. Bourassa, 2009: Comparisons of monthly mean 10 m wind speeds from satellites and NWP products over the global ocean. J. Geophys. Res., 114 , D16109. doi:10.1029/2008JD011696.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102 , (C4). 87038718.

  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Winterfeldt, J., A. Andersson, C. Klepp, S. Bakan, and R. Weisse, 2010: Comparison of HOAPS, QuikSCAT and buoy wind speed in the eastern North Atlantic and the North Sea. IEEE Trans. Geosci. Remote Sens., 48 , 338348.

    • Search Google Scholar
    • Export Citation
  • Worley, S., S. Woodruff, R. Reynolds, S. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L. S., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, OAFlux Project, 64 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 698 395 15
PDF Downloads 192 58 6