An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness

Olivier Merlin Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Olivier Merlin in
Current site
Google Scholar
PubMed
Close
,
Ahmad Al Bitar Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Ahmad Al Bitar in
Current site
Google Scholar
PubMed
Close
,
Vincent Rivalland Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Vincent Rivalland in
Current site
Google Scholar
PubMed
Close
,
Pierre Béziat Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Pierre Béziat in
Current site
Google Scholar
PubMed
Close
,
Eric Ceschia Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Eric Ceschia in
Current site
Google Scholar
PubMed
Close
, and
Gérard Dedieu Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

Search for other papers by Gérard Dedieu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analytical expressions of evaporative efficiency over bare soil (defined as the ratio of actual to potential soil evaporation) have been limited to soil layers with a fixed depth and/or to specific atmospheric conditions. To fill the gap, a new analytical model is developed for arbitrary soil thicknesses and varying boundary layer conditions. The soil evaporative efficiency is written [0.5 − 0.5 cos(πθL/θmax)]P with θL being the water content in the soil layer of thickness L, θmax being the soil moisture at saturation, and P being a function of L and potential soil evaporation. This formulation predicts soil evaporative efficiency in both energy-driven and moisture-driven conditions, which correspond to P < 0.5 and P > 0.5, respectively. For P = 0.5, an equilibrium state is identified when retention forces in the soil compensate the evaporative demand above the soil surface. The approach is applied to in situ measurements of actual evaporation, potential evaporation, and soil moisture at five different depths (5, 10, 30, 60, and 100 cm) collected in summer at two sites in southwestern France. It is found that (i) soil evaporative efficiency cannot be considered as a function of soil moisture only because it also depends on potential evaporation, (ii) retention forces in the soil increase in reaction to an increase of potential evaporation, and (iii) the model is able to accurately predict the soil evaporation process for soil layers with an arbitrary thickness up to 100 cm. This new model representation is expected to facilitate the coupling of land surface models with multisensor (multisensing depth) remote sensing data.

Corresponding author address: Olivier Merlin, Centre d’Etudes Spatiales de la Biosphère, 31401, Toulouse CEDEX 9, France. Email: olivier.merlin@cesbio.cnes.fr

Abstract

Analytical expressions of evaporative efficiency over bare soil (defined as the ratio of actual to potential soil evaporation) have been limited to soil layers with a fixed depth and/or to specific atmospheric conditions. To fill the gap, a new analytical model is developed for arbitrary soil thicknesses and varying boundary layer conditions. The soil evaporative efficiency is written [0.5 − 0.5 cos(πθL/θmax)]P with θL being the water content in the soil layer of thickness L, θmax being the soil moisture at saturation, and P being a function of L and potential soil evaporation. This formulation predicts soil evaporative efficiency in both energy-driven and moisture-driven conditions, which correspond to P < 0.5 and P > 0.5, respectively. For P = 0.5, an equilibrium state is identified when retention forces in the soil compensate the evaporative demand above the soil surface. The approach is applied to in situ measurements of actual evaporation, potential evaporation, and soil moisture at five different depths (5, 10, 30, 60, and 100 cm) collected in summer at two sites in southwestern France. It is found that (i) soil evaporative efficiency cannot be considered as a function of soil moisture only because it also depends on potential evaporation, (ii) retention forces in the soil increase in reaction to an increase of potential evaporation, and (iii) the model is able to accurately predict the soil evaporation process for soil layers with an arbitrary thickness up to 100 cm. This new model representation is expected to facilitate the coupling of land surface models with multisensor (multisensing depth) remote sensing data.

Corresponding author address: Olivier Merlin, Centre d’Etudes Spatiales de la Biosphère, 31401, Toulouse CEDEX 9, France. Email: olivier.merlin@cesbio.cnes.fr

Save
  • Béziat, P., E. Ceschia, and G. Dedieu, 2009: Carbon balance of a three crop succession over two cropland sites in southwest France. Agric. For. Meteor., 149 , 16281645.

    • Search Google Scholar
    • Export Citation
  • Calvet, J-C., and P. Bessemoulin, 1998: Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J. Appl. Meteor., 37 , 371386.

    • Search Google Scholar
    • Export Citation
  • Camillo, P. J., and R. J. Gurney, 1986: A resistance parameter for bare soil evaporation models. Soil Sci., 141 , 95105.

  • Chanzy, A., 1991: Modélisation simplifiée de l’évaporation d’un sol nu utilisant l’humidité et la température de surface accessibles par télédétection. Ph.D. thesis, INAPG Institut National Agronomique Paris-Grignon, 221 pp.

    • Search Google Scholar
    • Export Citation
  • Chanzy, A., and L. Bruckler, 1993: Significance of soil surface moisture with respect to daily bare soil evaporation. Water Resour. Res., 29 , 11131125.

    • Search Google Scholar
    • Export Citation
  • Chanzy, A., M. Mumen, and G. Richard, 2008: Accuracy of top soil moisture simulation using a mechanistic model with limited soil characterization. Water Resour. Res., 44 , W03432. doi:10.1029/2006WR005765.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B., R. J. Reginato, and S. B. Idso, 1986: An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agric. For. Meteor., 37 , 7588.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20 , 682690.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., W. P. Kustas, and J. H. Prueger, 2008: Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote Sens. Environ., 112 , 12681281.

    • Search Google Scholar
    • Export Citation
  • Daamen, C. C., and L. P. Simmonds, 1996: Measurement of evaporation from bare soil and its estimation using surface resistance. Water Resour. Res., 32 , 13931402.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83 , 18891903.

    • Search Google Scholar
    • Export Citation
  • Fritton, D. D., D. Kirkham, and R. H. Shaw, 1967: Soil water and chloride redistribution under various evaporation potentials. Soil Sci. Soc. Amer. Proc., 31 , 599603.

    • Search Google Scholar
    • Export Citation
  • Fuchs, M., and C. Tanner, 1967: Evaporation from a drying soil. J. Appl. Meteor., 6 , 852857.

  • Jacquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52 , 93134.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. 2nd ed. Springer, 502 pp.

  • Komatsu, T. S., 2003: Towards a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. J. Appl. Meteor., 42 , 13301334.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., N. Saigusa, and T. Sato, 1990: A parameterization of evaporation from bare soil surface. J. Appl. Meteor., 29 , 385389.

  • Kustas, W. P., T. J. Schmugge, K. S. Humes, T. J. Jackson, R. Parry, M. A. Weltz, and M. S. Moran, 1993: Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands. J. Appl. Meteor., 32 , 17811790.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., X. Zhan, and T. J. Schmugge, 1998: Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Remote Sens. Environ., 64 , 116131.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8 , 862880.

    • Search Google Scholar
    • Export Citation
  • Lee, T. J., and R. A. Pielke, 1992: Estimating the soil surface specific humidity. J. Appl. Meteor., 31 , 480484.

  • Liu, S., D. Mao, and L. Jia, 2007: Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol. Earth Syst. Sci., 11 , 769783.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., and J. Noilhan, 1991: Comparative study of various formulations of evaporation from bare soil using in situ data. J. Appl. Meteor., 30 , 13541365.

    • Search Google Scholar
    • Export Citation
  • Merlin, O., J. P. Walker, A. Chehbouni, and Y. Kerr, 2008: Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sens. Environ., 112 , 39353946.

    • Search Google Scholar
    • Export Citation
  • Mihailović, D. T., R. A. Pielke, B. Rajković, T. J. Lee, and M. Jeftić, 1993: A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models. J. Appl. Meteor., 32 , 10381054.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107 , 127.

  • Nishida, K., R. R. Nemani, J. M. Glassy, and S. W. Running, 2003: Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status. IEEE Trans. Geosci. Remote Sens., 41 , 493501.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Passerat de Silans, A., 1986: Transferts de masse et de chaleur dans un sol stratifié soumis à une excitation atmosphérique naturelle: Comparaison modèle- expérience. Ph.D. thesis, National Institute of Polytechnics, 205 pp.

  • Perrier, A., 1975: Etude physique de l’évapotranspiration dans des conditions naturelles. II: Expressions et paramètres donnant l’évapotranspiration réelle d’une surface mince. Ann. Agron., 26 , 105123.

    • Search Google Scholar
    • Export Citation
  • Philip, J. R., 1957: Evaporation and moisture and heat fields in the soil. J. Atmos. Sci., 14 , 354366.

  • Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23 , 479510.

    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., 1997: Soil and moisture independent estimation of two-stage evaporation from potential evaporation and albedo or surface temperature. Water Resour. Res., 33 , 111122.

    • Search Google Scholar
    • Export Citation
  • Saravanapavan, T., and G. D. Salvucci, 2000: Analysis of rate-limiting processes in soil evaporation with implications for soil resistance models. Adv. Water Resour., 23 , 493502.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., M. D. Heiser, and F. G. Hall, 1992: Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales. J. Geophys. Res., 97 , 1903319059.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., and J. S. Wallace, 1985: Evaporation from sparse crops—An energy combination theory. Quart. J. Roy. Meteor. Soc., 111 , 839855.

    • Search Google Scholar
    • Export Citation
  • van de Griend, A. A., and M. Owe, 1994: Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions. Water Resour. Res., 30 , 181188.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. S., 1995: Calculating evaporation: Resistance to factors. Agric. For. Meteor., 73 , 353366.

  • Yamanaka, T., A. Takeda, and F. Sugita, 1997: A modified surface-resistance approach for representing bare-soil evaporation: Wind tunnel experiments under various atmospheric conditions. Water Resour. Res., 33 , 21172128.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, T., A. Takeda, and J. Shimada, 1998: Evaporation beneath the soil surface: Some observational evidence and numerical experiments. Hydrol. Processes, 12 , 21932203.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 238 22
PDF Downloads 343 137 21