Local Structure Parameters of Temperature and Humidity in the Entrainment-Drying Convective Boundary Layer: A Large-Eddy Simulation Analysis

Sylvain Cheinet Institut Franco-Allemand de Recherches de Saint-Louis, Saint-Louis, France

Search for other papers by Sylvain Cheinet in
Current site
Google Scholar
PubMed
Close
and
Pierre Cumin Institut Franco-Allemand de Recherches de Saint-Louis, Saint-Louis, France

Search for other papers by Pierre Cumin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many wave propagation applications depend on the local, instantaneous structure parameters of humidity and of potential temperature . This study uses a large-eddy simulation to explore and compare the variability of and in the shearless, entrainment-drying convective boundary layer (CBL). The predicted horizontal mean profiles of these quantities are shown to agree with corresponding observations. The results in the bulk CBL suggest that the largest occur in the entrained tropospheric air whereas the largest are within the convective plumes. There are distinct correlations between the vertical velocity and and between the vertical velocity and . It is shown that these correlations can significantly contribute to the mean vertical velocity biases measured from radars and sodars. A physical interpretation for these contributions is offered in terms of the CBL dynamics.

Corresponding author address: Sylvain Cheinet, Institut Saint-Louis, 5 rue du Général Cassagnou, 68 300 Saint-Louis, France. Email: sylvain.cheinet@isl.eu

Abstract

Many wave propagation applications depend on the local, instantaneous structure parameters of humidity and of potential temperature . This study uses a large-eddy simulation to explore and compare the variability of and in the shearless, entrainment-drying convective boundary layer (CBL). The predicted horizontal mean profiles of these quantities are shown to agree with corresponding observations. The results in the bulk CBL suggest that the largest occur in the entrained tropospheric air whereas the largest are within the convective plumes. There are distinct correlations between the vertical velocity and and between the vertical velocity and . It is shown that these correlations can significantly contribute to the mean vertical velocity biases measured from radars and sodars. A physical interpretation for these contributions is offered in terms of the CBL dynamics.

Corresponding author address: Sylvain Cheinet, Institut Saint-Louis, 5 rue du Général Cassagnou, 68 300 Saint-Louis, France. Email: sylvain.cheinet@isl.eu

Save
  • Angevine, W., 1997: Errors in mean vertical velocities measured by boundary layer wind profilers. J. Atmos. Oceanic Technol., 14 , 565–569.

    • Search Google Scholar
    • Export Citation
  • Berg, L., and R. Stull, 2004: Parameterization of joint-frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J. Atmos. Sci., 61 , 813–828.

    • Search Google Scholar
    • Export Citation
  • Cheinet, S., 2003: A multiple mass-flux parameterization for the surface-generated convection. Part I: Dry plumes. J. Atmos. Sci., 60 , 2313–2327.

    • Search Google Scholar
    • Export Citation
  • Cheinet, S., and P. Siebesma, 2009: Variability of local structure parameters in the convective boundary layer. J. Atmos. Sci., 66 , 1002–1017.

    • Search Google Scholar
    • Export Citation
  • Cheinet, S., A. Beljaars, M. Köhler, J-J. Morcrette, and P. Viterbo, 2005: Assessing physical processes in the ECMWF model forecasts using the ARM SGP observations. ECMWF-ARM Rep. Series 1, 29 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/ARM/ARM_RS1.pdf].

    • Search Google Scholar
    • Export Citation
  • Coulter, R., and M. Kallistratova, 2004: Two-decade progress in sodar techniques: A review of 11 ISARS proceedings. Meteor. Atmos. Phys., 85 , 3–19.

    • Search Google Scholar
    • Export Citation
  • Couvreux, F., F. Guichard, J-L. Redelsperger, and V. Masson, 2007: Negative water vapour skewness and dry tongues in the convective boundary layer: Observations and LES budget analysis. Bound.-Layer Meteor., 123 , 269–294.

    • Search Google Scholar
    • Export Citation
  • de Roode, S., P. Duynkerke, and H. Jonker, 2004: Large-eddy simulation: How large is large enough? J. Atmos. Sci., 61 , 403–421.

  • Druilhet, A., J. P. Frangi, D. Guedalia, and J. Fontan, 1983: Experimental studies of the turbulence structure parameters of the convective boundary layer. J. Climate Appl. Meteor., 22 , 594–608.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., 1984: Wind shear enhancement of entrainment and refractive index structure parameter at the top of a turbulent mixed layer. J. Atmos. Sci., 41 , 3472–3484.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., 1987: A top-down and bottom-up diffusion model of CT2 and Cq2 in the entraining convective boundary layer. J. Atmos. Sci., 44 , 1009–1017.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., 1991: The humidity and temperature sensitivity of clear-air radars in the convective boundary layer. J. Appl. Meteor., 30 , 1064–1074.

    • Search Google Scholar
    • Export Citation
  • Jonker, H., P. Duynkerke, and J. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56 , 801–808.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, S. Jacoby-Koaly, B. Bénech, F. Lohou, and F. Girard-Ardhuin, 2002: Comparison of radar reflectivity and vertical velocity observed with a scannable C-band radar and two UHF profilers in the lower troposphere. J. Atmos. Oceanic Technol., 19 , 899–910.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, S. Jacoby-Koaly, B. Bénech, F. Lohou, F. Girard-Ardhuin, and A. Druilhet, 2003: Reply. J. Atmos. Oceanic Technol., 20 , 1224–1229.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1991: Boundary layer moisture regimes. Quart. J. Roy. Meteor. Soc., 117 , 151–176.

  • Muschinski, A., 2004: Local and global statistics of clear-air Doppler radar signals. Radio Sci., 39 , RS1008. doi:10.1029/2003RS002908.

  • Muschinski, A., P. Sullivan, D. Wuertz, R. Hill, S. Cohn, D. Lenschow, and R. Doviak, 1999: First synthesis of wind profiler signals on the basis of large-eddy simulation data. Radio Sci., 34 , 1437–1459.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and T. VanZandt, 1994: Mean vertical motions seen by radar wind profilers. J. Appl. Meteor., 33 , 984–995.

  • Nastrom, G., and T. VanZandt, 1996: Biases due to gravity waves in wind profiler measurements of winds. J. Appl. Meteor., 35 , 243–257.

    • Search Google Scholar
    • Export Citation
  • Ostashev, V., 1994: Sound propagation and scattering in media with random inhomogeneities of sound speed, density and medium velocity. Waves Random Media, 4 , 403–428.

    • Search Google Scholar
    • Export Citation
  • Ottersten, H., 1969: Atmospheric structure and radar backscattering in clear air. Radio Sci., 12 , 1179–1193.

  • Peltier, L., and J. Wyngaard, 1995: Structure-function parameters in the convective boundary layer from large-eddy simulation. J. Atmos. Sci., 52 , 3641–3660.

    • Search Google Scholar
    • Export Citation
  • Penc, R., 2001: Moisture analysis of a type I cloud-topped boundary layer from Doppler radar and rawinsonde observations. J. Atmos. Oceanic Technol., 18 , 1941–1957.

    • Search Google Scholar
    • Export Citation
  • Petenko, I., and E. Shurygin, 1999: A two-regime model for the probability density function of the temperature structure parameter in the convective boundary layer. Bound.-Layer Meteor., 93 , 381–394.

    • Search Google Scholar
    • Export Citation
  • Peters, G., B. Fischer, and H. Kirtzel, 1998: One-year operational measurements with a sonic anemometer–thermometer and a Doppler sodar. J. Atmos. Oceanic Technol., 15 , 18–28.

    • Search Google Scholar
    • Export Citation
  • Pollard, B., S. Khanna, S. Frasier, J. Wyngaard, D. Thomson, and R. McIntosh, 2000: Local structure of the convective boundary layer from a volume-imaging radar. J. Atmos. Sci., 57 , 2281–2296.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and C-H. Moeng, 1991: Plume fluxes in clear and cloudy convective boundary layers. J. Atmos. Sci., 48 , 1746–1757.

  • Scipion, D., P. Chilson, E. Fedorovich, and R. Palmer, 2008: Evaluation of an LES-based wind profiler simulator for observations of a daytime atmospheric convective boundary layer. J. Atmos. Oceanic Technol., 25 , 1423–1436.

    • Search Google Scholar
    • Export Citation
  • Tatarski, V., 1961: Wave Propagation in a Turbulent Medium. McGraw Hill, 285 pp.

  • Tatarski, V., and A. Muschinski, 2001: The difference between Doppler velocity and real wind velocity in single scattering from refractive index fluctuations. Radio Sci., 36 , 1405–1423.

    • Search Google Scholar
    • Export Citation
  • Thomson, D., R. Coulter, and Z. Warhaft, 1978: Simultaneous measurements of turbulence in the lower atmosphere using sodar and aircraft. J. Appl. Meteor., 17 , 723–734.

    • Search Google Scholar
    • Export Citation
  • van Dinther, D., 2010: Obtaining the structure parameter of temperature from DALES output. Wageningen University M.S. Internal Rep., 20 pp.

  • Wang, S., and B. Stevens, 2000: Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large-eddy simulation study. J. Atmos. Sci., 57 , 423–441.

    • Search Google Scholar
    • Export Citation
  • White, A., C. Fairall, and D. Thomson, 1991: Radar observations of humidity variability in and above the marine atmospheric boundary layer. J. Atmos. Oceanic Technol., 8 , 639–657.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., and Coauthors, 1995: Contamination of wind profiler data by migrating birds: Characteristics of potential data and potential solutions. J. Atmos. Oceanic Technol., 12 , 449–467.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., and M. LeMone, 1980: Behavior of the refractive index structure parameter in the entraining convective boundary layer. J. Atmos. Sci., 37 , 1573–1585.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., and C-H. Moeng, 1992: Parameterizing turbulent diffusion through the joint probability density. Bound.-Layer Meteor., 60 , 1–13.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 209 105 4
PDF Downloads 128 49 4