A Study on the Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

Liang Liao Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Greenbelt, Maryland

Search for other papers by Liang Liao in
Current site
Google Scholar
PubMed
Close
and
Robert Meneghini NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Robert Meneghini in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An important objective for the dual-wavelength Ku-/Ka-band precipitation radar (DPR) that will be on board the Global Precipitation Measurement (GPM) core satellite is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku and Ka bands, and the radar reflectivity factor at Ku band ZKu for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu–DFR plane assuming that the snow follows the Gunn–Marshall size distribution and rain follows the Marshall–Palmer size distribution. In an effort to verify the simulated results, the data collected by the Airborne Second-Generation Precipitation Radar (APR-2) in the Wakasa Bay Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) campaign are employed. Using the signatures of linear depolarization ratio at Ku band, the APR-2 data can be easily divided into the regions of snow, mixed phase, and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu–DFR plane. For over 90% of the observations from a cold-season stratiform precipitation event, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of the GPM DPR at Ku band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

Corresponding author address: Dr. Liang Liao, Goddard Earth Science Technology/UMBC, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. Email: liang.liao-1@nasa.gov

Abstract

An important objective for the dual-wavelength Ku-/Ka-band precipitation radar (DPR) that will be on board the Global Precipitation Measurement (GPM) core satellite is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku and Ka bands, and the radar reflectivity factor at Ku band ZKu for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu–DFR plane assuming that the snow follows the Gunn–Marshall size distribution and rain follows the Marshall–Palmer size distribution. In an effort to verify the simulated results, the data collected by the Airborne Second-Generation Precipitation Radar (APR-2) in the Wakasa Bay Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) campaign are employed. Using the signatures of linear depolarization ratio at Ku band, the APR-2 data can be easily divided into the regions of snow, mixed phase, and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu–DFR plane. For over 90% of the observations from a cold-season stratiform precipitation event, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of the GPM DPR at Ku band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

Corresponding author address: Dr. Liang Liao, Goddard Earth Science Technology/UMBC, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. Email: liang.liao-1@nasa.gov

Save
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago, 324 pp.

  • Brandes, E., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43 , 15411553.

  • Brandes, E., K. Ikeda, G. Zhang, M. Schoenhuber, and R. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46 , 634650.

    • Search Google Scholar
    • Export Citation
  • Bringi, V., G. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurement of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 16791688.

    • Search Google Scholar
    • Export Citation
  • Bruggeman, D. A. G., 1935: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielectrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen (Calculation of various physical constants of heterogeneous substance: I. Dielectric constants and conductivity of the heterostructure from isotropic substances). Ann. Phys., 24 , 636679.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26 , 20712088.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57 , 34063413.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. Bringi, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59 , 23732384.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15 , 452461.

  • Heymsfield, A. J., A. Bansemer, P. R. Field, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Search Google Scholar
    • Export Citation
  • Im, E., 2003: APR-2 dual-frequency airborne radar observations, Wakasa Bay. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0195.html].

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39 , 102116.

    • Search Google Scholar
    • Export Citation
  • Kumagai, H., R. Meneghini, and T. Kozu, 1993: Preliminary results from multiparameter airborne rain radar measurement in the western Pacific. J. Appl. Meteor., 32 , 431440.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Langleben, M. P., 1954: The terminal velocity of snowflakes. Quart. J. Roy. Meteor. Soc., 80 , 174181.

  • Liao, L., and R. Meneghini, 2005a: A study of air/space-borne dual-wavelength radar for estimates of rain profiles. Adv. Atmos. Sci., 22 , 841851.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005b: On modeling air/spaceborne radar returns in the melting layer. IEEE Trans. Geosci. Remote Sens., 43 , 27992809.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength airborne radar for snow parameter estimation. J. Atmos. Oceanic Technol., 22 , 14941506.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46 , 15141524.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2009: Measurements and simulations of nadir-viewing radar returns from the melting layer at X- and W-bands. J. Appl. Meteor. Climatol., 48 , 22152226.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64 , 17271736.

  • Meneghini, R., and H. Kumagai, 1994: Characteristics of the vertical profiles of dual-frequency, dual-polarization radar data in stratiform rain. J. Atmos. Oceanic Technol., 11 , 701711.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relations for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnic, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37 , 12281240.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., A. C. Berkun, W. Chun, E. Im, and S. L. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46 , 8498.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., C. Kummerow, W-K. Tao, and R. F. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, A. Heymsfield, L. Li, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle distribution using TC4 observations. J. Atmos. Sci., 67 , 195216.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., G. M. Heymsfield, L. Li, and A. J. Heymsfield, 2005: Retrieval optically thick ice cloud microphysical properties by using airborne dual-wavelength radar measurements. J. Geophys. Res., 110 , D19201. doi:10.1029/2005JD005969.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 385 177 12
PDF Downloads 250 88 10